
Mathematical Introduction to Machine Learning

Lecture 1: An overview of machine learning in high dimension
September 13, 2023

Lecturer: Lei Wu Scribe: Lei Wu

In this lecture, we provide an overview of machine learning (ML), specifically focusing on supervised
learning from a mathematical viewpoint. Special emphasis is placed on the challenges and opportunities
that arise when dealing with high-dimensional data.

1 Introduction

In supervised learning, we are given n samples (x1, y1), · · · , (xn, yn) with

yi = f∗(xi) + εi,

where:

• xi’s are the inputs and let xi ∈ X , representing the input space.

• yi’s are the labels and let yi ∈ Y , representing the output space.

• εi’s represent the noise.

• f∗ : Rd 7→ Y denotes the target function, also known as the ground truth or label function.

Note that we denote by X ,Y the input and output spaces, respectively. The collection S = {(xi, yi)}ni=1 is
referred to as the training (data)set, as we use these data to train our machine learning models.

Remark 1.1. In theoretical analysis, it is often assumed that x1, . . . , xn are iid (Independent and Identically
Distributed) samples drawn from an input distribution ρ. It should be noted that this iid assumption may not
always hold in practice.

The aim of supervised learning is to approximate/recover/learn the unknown target function f∗ by
using the training samples S along with some potential prior knowledge about f∗ (e.g., f∗ might be known
to be rotationally or permutation invariant). Supervised learning problems can typically be categorized as
follows:

• Regression: The labels take on real or continuous values; for example, Y = R. Regression problems
are commonly found in applications like financial forecasting and risk assessment. Figure 1 illustrates
an example of learning a univariate function in a regression setting.

• Classification: The labels are discrete, for example Y = {1, 2, 3, . . . , 10}. Note that the numerical
ordering of the labels is not inherent but imposed for representation. Classification problems include
applications like image recognition and semantic analysis.

1

2 1 0 1 2

2

1

0

1

2

3

data
model
target function

Figure 1: Learning a univariate function using only finite samples. Here, the model is a piecewise linear function.

Low dimension vs. high dimension. It is worth noting that the univariate function regression problem
shown in Figure 1 is low-dimensional and can be effectively addressed using traditional methods like (piece-
wise) polynomial interpolation.

One major advantage of modern ML over traditional methods is its ability to handle high-dimensional
problems efficiently. Below are examples of such high-dimensional problems where ML has proven to be
invaluable:

• Image recognition. Shown below is the task of ImageNet. This dataset has around 1 million 224 ×
224 × 3 color images as well as the labels. The labels are image categories, e.g. bird, cat, and the
number of categories is 1000. The aim is to learn a classifier: [0, 1]224×224×3 → {1, 2, . . . , 1000}.
Here, the input dimension is d = 150528� 1.

Figure 2: The ImageNet website: https://www.image-net.org/update-mar-11-2021.php

• Molecule modeling. Learn the potential energy function f∗, which maps the atom coordinates to the
potential energy of that molecule. Assume that there are N atoms. Then, we know that f∗ : R3×N 7→
R must satisfy the following symmetries/invariances:

– Translation and rotation,

– Permutation among identical atoms.

• Image translation. Learn a map T : [0, 1]214×214×3 7→ [0, 1]214×214×3. In such a case, the output
space Y is high-dimensional too.

2

https://en.wikipedia.org/wiki/ImageNet
https://www.image-net.org/update-mar-11-2021.php

Figure 3: https://affinelayer.com/pixsrv/

• Solving PDEs. Learn the solution map: u = S(f), which maps the source term f directly to the
solution u. In this case, both the input f and output u are functions, and the input/output space is
infinite dimensional.

L(u,∇u,∇2u) = f. (1)

Remark 1.2. For all the examples above, the input space is high-dimensional, and the target functions
are complex nonlinear functions. In some cases, even the output space is high-dimensional or infinite-
dimensional. These challenges often require us to use large models f(·; θ) capable of approximating the
target functions effectively. This is where machine learning models, particularly neural networks, show
their strength in handling high-dimensional data.

1.1 Learning paradigm

The most popular way of doing machine learning can be decomposed into three steps.

• Step 1. Choose an appropriate (parametric) model f(·; θ) with θ ∈ Rm. Here, θ denotes the parame-
ters to be learned from data and m denotes the parameter/model size. Then Fm = {f(·; θ) : θ ∈ Rm}
forms our hypothesis space/class (also called the model space/class). The commonly used models
include

– linear functions: f(x; θ) = θTx+ θ0,

– Fixed basis expansions: f(x; θ) =
∑m

j=1 θjϕj(x), where {ϕj} are a set of basis. Typical bases
include polynomials, trigonometric functions, wavelets, random features, piecewise polynomials
(aka splines).

– (Deep) neural networks.

• Step 2. Formulate an optimization problem. The task of learning is to select a f ∈ Fm such that f is
close to f∗ by using the training data S. This can be formulated as to minimize the empirical risk

min
θ
R̂(θ) :=

1

n

n∑
i=1

`(f(xi; θ), yi),

where ` : Y × Y 7→ [0,∞) is a loss function. The empirical risk measures the fitting error at the
training data.

3

https://affinelayer.com/pixsrv/

Sometimes, we may have some prior information about f∗ (e.g., f∗ is smooth). In learning, we can
design a penality function p(·) to encode this prior information. As a result, we will minimize the
following regularized risk

min
θ
R̂(θ) + λ p(θ). (2)

The choice of p(·) is to ensure that when the value of p(θ) is small, the corresponding model f(·; θ)
is close to f∗.

Here, λ is called the hyperparameter/tuning parameter, which balances the fitting error and penality.
Different from the model parameters θ, the hyperparameter is not learned from data.

• Step 3. Choose an optimization method to solve the problem (2). Common methods include gradient
descent, stochastic gradient descent, and various second-order methods like Newton’s method.

Measure the model performance. Denote by f(·; θ̂n) the model generated by the above learning proce-
dure. Then the next question is: How good is the the learned model f(·; θ̂n)? This is measured by using the
generalization error/excess risk:

E(θ) = Ex∼ρ[`(f(x; θ), f∗(x))], (3)

which quantifies how the learned model generalizes to unseen data points. Keep in mind that our objective
is to minimize the generalization error instead of the empirical risk. However, we can only deal with the
empirical risk since only training data are available.

In practice, it is impossible to compute the population risk (3) exactly. We often approximate the pop-
ulation risk by Monte-Carlo integration over a test set: Stest, the resulting error is called the test error. In
comparison, the empirical risk is often called the training error.

Remark 1.3. Think about the difference between generalization error and test error. When the loss function
is bounded, e.g., the classification problem, we roughly have

generalization error(θ̂n)− test error(θ̂n) = O

(
1√
|Stest|

)
, (4)

where |Stext| denote the size of test set. This error estimate is due to that the latter is a Monte-Carlo
approximation of the former. This error in practice is often negligible.

Prove Eq. (4). Let {(xj , f∗(xj))}nt
j=1 the test set and Zj = `(f(xj ; θ̂n), f∗(xj)) for j = 1, . . . , nt. Then,

we have we have

∆(θ̂n) = E

(E[Zj]−
1

nt

m∑
j=1

Zj)
2


2 Dissecting generalization errors

Here we attempt to understand how the generalization error depends on the parameter size m (i.e., the
model complexity) and sample size n. Does increasing the parameter size/model complexity always reduce
the generalization error of the learned model? To this end, we introduce the following the solution

θ∗ = argmin
θ
R(θ). (5)

4

Figure 4: An illustration of the estimation error. The black dots represent the training data. The black curve is the
ground truth. The blue and red curves denote two solutions in the hypothesis space. For larger models, it is easier to
select bad solutions (the red curve).

Note that f(·; θ∗) denote the best solution in the hypothesis space Fm for approximating f∗.
Let fθ = f(·; θ). Consider the following decomposition of the generalization error:

fθ̂ − f
∗︸ ︷︷ ︸

gen-err

= fθ̂ − fθ∗︸ ︷︷ ︸
estimation error

+ fθ∗ − f∗︸ ︷︷ ︸
approximation error

. (6)

Let us discuss the two terms of the RHS separately.

• Approximation error. This error is independent of the sample size and only depends on the hypoth-
esis space. In general, the larger is the hypothesis space, the smaller is the approximation error. If
f∗ ∈ Fm, this error becomes zero.

• Estimation error. This error is caused by the fact that we have only finite training samples. We are
unable to identify the best solution θ∗ with only finite data.

– Selection uncertainty. We first assume that the data are clean, i.e., yi = f∗(xi). Figure 4
provides an illustration of the estimation error in this case. Note that there are many solutions f ’s
in Fm such that they all perfectly fit the n data points; some of them may generalize very badly.
This causes uncertainty in selecting solutions by using only finite data points and inevitably a
bad solution is selected. The larger the hypothesis space/model is, the worse those bad solutions
are and the easier the bad solution is selected.

* Note the regularization can alleviate the issue. But there is no perfect regularization that
can resolve it.

* The more data we have, the smaller is the uncertainty, thereby the generalization error.

– Overfitting? In most classic textbooks, the estimation error is explained by using the phe-
nomenon of “overfitting”. When there are noises in data, complex models are easier to fit the
noise than simple models. This overfitting of noises inevitably causes a type of error. Never-
theless, as explained above, the estimation error exists and increases with the model complexity
even when the data are completely clean. In such a case, “overfitting” is a bad explanation of
the estimation error, since there is no noise to overfit.

5

2.1 The generalization error curve

Here we attempt to understand how the generalization error changes with the model size. Let n,m denote the
sample size and number of parameters, respectively. Let g(n,m), e(n,m), a(m) denote the generalization
error, estimation error, and approximation error, respectively. Roughly, we have

g(n,m) = e(n,m) + a(m).

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)

(a) poly-1: Under fitting

d 19

save

norm: 176.96526383385023

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(b) poly-3: Nice fitting

d 20

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm: 241.08926589939713

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(c) poly-20: Overfitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)(d) poly-1000: Benign
overfitting

Figure 5: The trade-off between estimation error and approximation error.

In general, we only know that

• e(n,m) is decreasing with n and increasing with m 1;

• a(m) is decreasing with m.

Hence, there must exist trade-offs between the approximation error and estimation error for obtaining the
optimal generalization error. We ask the question:

For fixed n, how g(n,m) behaves when increasing m?

• The most common picture is the U-shaped curve shown in the left subplot of Figure 6, suggesting that
the generalization error first decreases then increases.

• Is the U-shaped picture really true? In general, we only know that e(n,m) decreases and a(m)
increases with m. The middle and right subplots in Figure 6 show that we can construct e(n, ·)
and a(·) such that g(n, ·) exhibits very complicated multiple-descent behaviors. These curves are
artificially constructed but they indeed reveal the potential complexity of the generalization error
curve. Do these curves really exist in practical models? The answer is affirmative, e.g., the random
feature models and neural networks [Belkin et al., 2019].

In a word, the shape of the generalization error curve depends on the relative speed between approximation
error and estimation error. For simple tasks (e.g., the linear regression), the approximation error goes to
zero extremely fast, yielding a simple U-shaped curve. However, for learning high-dimensional complex
nonlinear functions, the approximation error cannot be ignored even when m is very large. In such a case,
the generalization error curve may exhibit complex behaviors.

1The assumption that e(n,m) increases with m is not always true. When increasing m, the model class always becomes larger.
However, the subset that ML methods can explore may become smaller in some cases. Indeed, there exist methods, which provide
simpler models when m is larger. We will see it in the future.

6

0 20 40 60 80 100 120 140

The parameter size m

0.2

0.4

0.6

0.8

1.0

1.2

U-shape

e(n, m)

a(m)

g(n, m)

0 50 100 150 200 250

The parameter size m

0.2

0.4

0.6

0.8

1.0

Double descent

e(n, m)

a(m)

g(n, m)

0 50 100 150 200 250 300 350

The parameter size m

0.2

0.4

0.6

0.8

1.0

Triple descent

e(n, m)

a(m)

g(n, m)

Figure 6: Generalization error vs. the model size m. Left: A U-shaped curve; Middle: A double descent
curve; Right: A triple descent curve.

3 Understanding the curse of dimensionality

We have claimed many times that learning high-dimensional nonlinear functions are extremely hard. Here
we provide both intuitive explanations and concrete quantifications of this hardness.

3.1 A simple example

Let us consider the piecewise constant model. For a target function f∗, consider the approximator:

f̂m(x) =

m∑
j=1

f∗(xj)1Sj ,

where Sj = [xj−1, xj]. Here xj = j
m = jh with j = 1, . . . ,m. Here h = 1

m is the grid size.

Lemma 3.1. For any f ∈ C1([0, 1]), define Lip(f) = supx∈[0,1] |f ′(x)|. Then,

‖f̂m − f∗‖2 ≤
C Lip(f∗)

m
.

Proof. Using the Lipschtiz propery, we have

‖f̂m − f∗‖22 =
m∑
j=1

∫ xj

xj−1

|f∗(xj−1)− f∗(x)|2 dx ≤
m∑
j=1

∫ xj

xj−1

Lip2(f∗)|xj−1 − x|2 dx

≤ Lip2(f∗)m
h3

3
= Lip2(f∗)

h2

3
=

Lip2(f∗)

3m2
.

Now let us proceed to a high-dimensional case. Consider the domain [0, 1]d, for which Sj is a cube of
volume hd and we have m = h−d cubes.

Theorem 3.2. For any f ∈ C1([0, 1]d), define Lip(f) = supx∈[0,1]d ‖∇f∗(x)‖2. Then,

‖f̂m − f∗‖2 ≤
C Lip(f∗)

m1/d
.

7

Proof. By definition,

‖f̂m − f∗‖22 =

m∑
j=1

∫
Sj

|f∗(xj−1)− f∗(x)|2 dx =

n∑
j=1

∫
[0,h]d

|f∗(xj−1)− f∗(xj−1 + t)|2 dt

≤ Lip2(f∗)

n∑
j=1

∫
[0,h]d

‖t‖22 dt = Lip2(f∗)

n∑
j=1

dhd−1
∫ h

0
t21 dt1

=
Lip2(f∗)

3
mhd+2 =

Lip2(f∗)

3
h2 =

Lip2(f∗)

3m2/d
.

Curse of dimensionality (CoD). Let us look at the error rateO(1/m1/d). To reach an accuracy ε, we need
m = (1/ε)d grid points, which depends on the input dimension d exponentially. For instance, if would like
an accuracy 0.1, we need 10d grid points, which is impossible for large d. We often call this phenomenon
the curse of dimensionality (CoD).

What causes the CoD?

• What is the property/information of the target function that allows our model to generalize to unseen
data points (outsize the grid points)?

The answer is the smoothness of f∗, i.e., Lip(f∗) < ∞. This can be seen clearly from the proof,
which depends on the local Taylor expansion. The error in fact goes like O(h) for all dimensions,
where h quantifies the (average) distance between a test point x with the nearest point in the training
set {xi}ni=1.

• Why is there a CoD when relying on the smoothness for generalization?

The error of the smoothness-based generalization is O(h), propotional to the typical size among
points. However, in a d-dimensional unit cube, we must need m = h−d points to reach this average
distance. Thus, the number of points grows with d exponentially fast, causing the CoD.

3.2 Can we overcome the CoD?

How can we overcome the CoD? We must exploit some particular properties (beyond the traditional smooth-
ness) of f∗ to learn a model for generalization. But one needs to be careful about the choice of model f(·; θ).
If f(·; θ) is not properly adaptive to the particular property of f∗, we may still suffer from CoD even if f∗

is simple.

• If f∗ is a general Lipschitz function, learning it suffers from CoD no matter what model is used.

• If f∗ is a linear function, learning it with a piecewise-constant model still suffers from CoD.

• If f∗ is a constant function, learning it with a piecewise-constant model does not suffer from CoD.

• If f∗ is a linear function, learning it with linear regression does not suffer from CoD.

8

References

[Belkin et al., 2019] Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy of
Sciences, 116(32):15849–15854.

9

	Introduction
	Learning paradigm

	Dissecting generalization errors
	The generalization error curve

	Understanding the curse of dimensionality
	A simple example
	Can we overcome the CoD?

