Diffusion Models and Score Matching

Instructor: Lei Wu 1

Mathematical Introduction to Machine Learning

Peking University, Fall 2023

¹School of Mathematical Sciences; Center for Machine Learning Research

What is Diffusion?

Dye molecules **diffuse** throughout the entire space by colliding with water molecules.

• Let $\{x_k\}_{k\geq 0}$ be the trajectory of dye molecules. We can model its dynamics as follows

$$x_{k+1} = x_k + \sqrt{\eta} \xi_k, \qquad 0 \le k \le N - 1,$$

where $\xi_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$ and η is a small factor ².

 $^{^2\}eta$ depends on the temperature, time unit, etc.

• Let $\{x_k\}_{k\geq 0}$ be the trajectory of dye molecules. We can model its dynamics as follows

$$x_{k+1} = x_k + \sqrt{\eta} \xi_k, \qquad 0 \le k \le N - 1,$$

where $\xi_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$ and η is a small factor ².

Thus, we have after N steps

$$x_{N\eta} = x_0 + \sqrt{\eta} \sum_{k=0}^{N-1} \xi_k \sim \mathcal{N}(x_0, \eta N).$$

 $^{^2\}eta$ depends on the temperature, time unit, etc.

• Let $\{x_k\}_{k\geq 0}$ be the trajectory of dye molecules. We can model its dynamics as follows

$$x_{k+1} = x_k + \sqrt{\eta} \xi_k, \qquad 0 \le k \le N - 1,$$

where $\xi_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$ and η is a small factor ².

ullet Thus, we have after N steps

$$x_{N\eta} = x_0 + \sqrt{\eta} \sum_{k=0}^{N-1} \xi_k \sim \mathcal{N}(x_0, \eta N).$$

• Consider the continuous-time limit: $\eta \to 0$. Let $t = N\eta$. Then, we have

$$x_{N\eta} \to X_t \sim \mathcal{N}(X_0, t).$$

 $^{^2\}eta$ depends on the temperature, time unit, etc.

• Let $\{x_k\}_{k\geq 0}$ be the trajectory of dye molecules. We can model its dynamics as follows

$$x_{k+1} = x_k + \sqrt{\eta} \xi_k, \qquad 0 \le k \le N - 1,$$

where $\xi_k \stackrel{iid}{\sim} \mathcal{N}(0,1)$ and η is a small factor ².

ullet Thus, we have after N steps

$$x_{N\eta} = x_0 + \sqrt{\eta} \sum_{k=0}^{N-1} \xi_k \sim \mathcal{N}(x_0, \eta N).$$

• Consider the continuous-time limit: $\eta \to 0$. Let $t = N\eta$. Then, we have

$$x_{N\eta} \to X_t \sim \mathcal{N}(X_0, t).$$

• We call $B_t := X_t - X_0$ Brownian motion.

 $^{^2\}eta$ depends on the temperature, time unit, etc.

Important properties of Brownian motion

• After time t, dye molecules only move $O(\sqrt{t})$

$$\mathbb{E}[B_t] = 0, \quad \mathbb{E}[B_t^2] = t.$$

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

Important properties of Brownian motion

• After time t, dye molecules only move $O(\sqrt{t})$

$$\mathbb{E}[B_t] = 0, \quad \mathbb{E}[B_t^2] = t.$$

• $B_t - B_s$ and B_s are independent.

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

Important properties of Brownian motion

• After time t, dye molecules only move $O(\sqrt{t})$

$$\mathbb{E}[B_t] = 0, \quad \mathbb{E}[B_t^2] = t.$$

- $B_t B_s$ and B_s are independent.
- The trajectory is continuous but **non-differentiable almost everywhere**.

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

General diffusion process (modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:

• From t to $t + \eta$, the dye molecule moves according to

$$x_{t+\eta} - x_t = \underbrace{f(x_t, t)\eta}_{\text{drift}} + \underbrace{\sigma(x_t, t)\sqrt{\eta}\xi_t}_{\text{diffusion}}.$$

General diffusion process (modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:

• From t to $t + \eta$, the dye molecule moves according to

$$x_{t+\eta} - x_t = \underbrace{f(x_t, t)\eta}_{\text{drift}} + \underbrace{\sigma(x_t, t)\sqrt{\eta}\xi_t}_{\text{diffusion}}.$$

• Taking $\eta \to 0$ gives a stochastic differential equation (SDE):

$$dx_t = f(x_t, t) dt + \sigma(x_t, t) dB_t$$

General diffusion process (modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:

• From t to $t + \eta$, the dye molecule moves according to

$$x_{t+\eta} - x_t = \underbrace{f(x_t, t)\eta}_{\text{drift}} + \underbrace{\sigma(x_t, t)\sqrt{\eta}\xi_t}_{\text{diffusion}}.$$

• Taking $\eta \to 0$ gives a stochastic differential equation (SDE):

$$dx_t = f(x_t, t) dt + \sigma(x_t, t) dB_t$$

In physics, it is often written (by let $\omega_t = \dot{B}_t$) as

$$\dot{x}_t = f(x_t, t) + \sigma(x_t, t)\omega_t,$$

where ω_t is often referred to as white noise.

A comparison between SDE and ODE ³

Ordinary Differential Equation (ODE):

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}, t) \text{ or } \mathrm{d}\mathbf{x} = \mathbf{f}(\mathbf{x}, t) \mathrm{d}t$$

Analytical Solution:
$$\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \mathbf{f}(\mathbf{x}, \tau) d\tau$$

Iterative Solution:

erical
$$\mathbf{x}(t+\Delta t) pprox \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t),t)\Delta$$

Numerical $\mathbf{x}(t+\Delta t) \approx \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t),t)\Delta t$

³taken from https://cvpr2022-tutorial-diffusion-models.github.io/

Langevin Dynamics

• (Over-damped) Langevin dynamics is a special SDE with the drift term given by a potential force $f(x) = -\nabla U(x)$:

$$dx_t = -\nabla U(x_t) dt + \sqrt{2\beta^{-1}} dB_t.$$
 (1)

Denote by $p_t = p(t, \cdot) = \text{Law}(X_t)$. Then, we have

$$p(t,x) \to \frac{e^{-\beta U(x)}}{Z} \text{ as } t \to \infty.$$
 (2)

Langevin Dynamics

• (Over-damped) Langevin dynamics is a special SDE with the drift term given by a potential force $f(x) = -\nabla U(x)$:

$$dx_t = -\nabla U(x_t) dt + \sqrt{2\beta^{-1}} dB_t.$$
 (1)

Denote by $p_t = p(t, \cdot) = \text{Law}(X_t)$. Then, we have

$$p(t,x) \to \frac{e^{-\beta U(x)}}{Z} \text{ as } t \to \infty.$$
 (2)

• To simulate (1), we can apply the Euler-Maruyama scheme:

$$X_{k+1} = X_k - \nabla U(X_k) \eta + \sqrt{2\beta^{-1} \eta} \xi_k \text{ with } \xi_k \sim \mathcal{N}(0, I_d).$$
 (3)

Langevin Dynamics

• (Over-damped) Langevin dynamics is a special SDE with the drift term given by a potential force $f(x) = -\nabla U(x)$:

$$dx_t = -\nabla U(x_t) dt + \sqrt{2\beta^{-1}} dB_t.$$
 (1)

Denote by $p_t = p(t, \cdot) = \text{Law}(X_t)$. Then, we have

$$p(t,x) o rac{e^{-\beta U(x)}}{Z} \text{ as } t o \infty.$$
 (2)

• To simulate (1), we can apply the Euler-Maruyama scheme:

$$X_{k+1} = X_k - \nabla U(X_k) \eta + \sqrt{2\beta^{-1}\eta} \xi_k \text{ with } \xi_k \sim \mathcal{N}(0, I_d).$$
 (3)

• Ornstein-Uhlenbeck (OU) process is a simplest SDE given by

$$\mathrm{d}x_t = -\theta x_t \,\mathrm{d}t + \sigma \,\mathrm{d}B_t,$$

for which $U(x) = \theta ||x||^2/2$, $\beta^{-1} = \sigma^2/2$. The equilibrium distribution is Gaussian:

$$p_{\infty}(x) \propto \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right)$$

Diffusion Models

In diffusion models

- We first gradually inject noise to a sample until it becomes pure noise. **This is a diffusion** process!!
- The generative models are (probabilistic) inverse of the forward process.

Diffusion Models

Why are diffusion models powerful?

- Guide the learning of reverse generative denoise process with the information of a fixed forward diffusion process!
- GAN, Normalizing flow, and Variational Autoencoder do not have forward-process information to guide the learning. [Explain it!]

Diffusion Models

There are two key issues in diffusion models:

- Construct forward diffusion process.
- Utilize forward information for learning the reverse process.

Denoising Diffusion Probabilistic Models (DDPM) ⁴

• DDPM chooses the following variance-preserving forward diffusion process:

$$x_{k+1} = \sqrt{1 - \beta_k} x_k + \sqrt{\beta_k} \xi_k, 0 \le k \le N - 1,$$

where $\xi_k \overset{iid}{\sim} \mathcal{N}(0, I_d)$.

⁴Jonathan Ho, Ajay Jain, Pieter Abbeel, *Denoising Diffusion Probabilistic Models*, NeurIPS 2020.

Denoising Diffusion Probabilistic Models (DDPM) ⁴

• DDPM chooses the following variance-preserving forward diffusion process:

$$x_{k+1} = \sqrt{1 - \beta_k} x_k + \sqrt{\beta_k} \xi_k, 0 \le k \le N - 1,$$

where $\xi_k \overset{iid}{\sim} \mathcal{N}(0, I_d)$.

• Consider $\beta_t = \beta = o(1)$. Then, we have

$$x_{k+1} = x_k - \frac{\beta x_k}{2} + \sqrt{\beta} \xi_k + o(\beta) \tag{4}$$

When $\beta \to 0$, we have the forward process is given by an OU process

$$\mathrm{d}x_t = -\frac{x_t}{2}\,\mathrm{d}t + \mathrm{d}B_t.$$

⁴Jonathan Ho, Ajay Jain, Pieter Abbeel, *Denoising Diffusion Probabilistic Models*, NeurIPS 2020.

Properties of the forward process

• First, the conditional distribution is always Gaussian

$$P_t := x_t | x_0 \sim \mathcal{N}(e^{-t/2}x_0, (1 - e^{-t})I_d) = \mathcal{N}\left(\alpha_t x_0, \sqrt{1 - \alpha_t^2}I_d\right),$$
 (5)

where $\alpha_t = e^{-t/2}$. We also denote $\sigma_t^2 := 1 - \alpha_t^2$. (Derivation is given on the blackboard.)

Properties of the forward process

• First, the conditional distribution is always Gaussian

$$P_t := x_t | x_0 \sim \mathcal{N}(e^{-t/2}x_0, (1 - e^{-t})I_d) = \mathcal{N}\left(\alpha_t x_0, \sqrt{1 - \alpha_t^2}I_d\right),$$
 (5)

where $\alpha_t = e^{-t/2}$. We also denote $\sigma_t^2 := 1 - \alpha_t^2$. (Derivation is given on the blackboard.)

• The distribution of x_t can be viewed as the convolution of $P(x_0)$ with a Gaussian smoothing kernel:

$$P_t(x) = \int P_t(x|x_0)P(x_0) dx_0 = \int P(x_0) \frac{1}{C_t} e^{-\frac{\|x - \alpha_t x_0\|^2}{2(1 - \alpha_t^2)}} dx_0,$$

where C_t is the normalizing constant.

Properties of the forward process

• First, the conditional distribution is always Gaussian

$$P_t := x_t | x_0 \sim \mathcal{N}(e^{-t/2}x_0, (1 - e^{-t})I_d) = \mathcal{N}\left(\alpha_t x_0, \sqrt{1 - \alpha_t^2}I_d\right),$$
 (5)

where $\alpha_t = e^{-t/2}$. We also denote $\sigma_t^2 := 1 - \alpha_t^2$. (Derivation is given on the blackboard.)

• The distribution of x_t can be viewed as the convolution of $P(x_0)$ with a Gaussian smoothing kernel:

$$P_t(x) = \int P_t(x|x_0)P(x_0) dx_0 = \int P(x_0) \frac{1}{C_t} e^{-\frac{\|x - \alpha_t x_0\|^2}{2(1 - \alpha_t^2)}} dx_0,$$

where C_t is the normalizing constant.

The forward process converges exponentially fast:

$$D_{\mathrm{KL}}\left(P_{t}||\mathcal{N}(0,I_{d})\right) \leq Ce^{-t}D_{\mathrm{KL}}\left(P_{0}||\mathcal{N}(0,I_{d})\right),$$

This means we can take a moderately large T such that

$$\text{Law}(x_T) \approx \mathcal{N}(0, I_d).$$

Reversing a Diffusion Process

What do we mean by reversing a diffusion process?

Reversing a Diffusion Process

What do we mean by reversing a diffusion process?

Definition 1

Given a forward process $\{X_t\}_{t\in[0,T]}$, the backward process $\{\tilde{X}_t\}_{t\in[T,0]}$ is said to a reverse process of $\{X_t\}_{t\in[0,T]}$ iff

$$Law(X_t) = Law(\tilde{X}_{T-t}).$$

Remark: The reverse process may be non-unique.

An Explicit Construction of Reverse Processes

• Consider a large family of diffusion process given by the forward SDE:

$$dx_t = f(x, t) dt + g(t) dB_t, \quad 0 \le t \le T.$$

⁵Brian Anderson, *Reverse-time diffusion equation models*, Stochastic Processes and their Applications 12 (1982)

An Explicit Construction of Reverse Processes

Consider a large family of diffusion process given by the forward SDE:

$$dx_t = f(x, t) dt + g(t) dB_t, \quad 0 \le t \le T.$$

Anderson (1982) ⁵ provided an explicit construction of the reverse SDE:

$$d\tilde{x}_t = \left[f(\tilde{x}_t, t) - g^2(t) \nabla_x \log p(\tilde{x}, t) \right] dt + g(t) d\bar{B}_t, \quad t \in [T, 0]$$

where \bar{B}_t is a backward Brownian motion and the time in the above equation is negative. (The proof can be easily completed by checking the Fokker-Planck equation (omitted). We refer to Anderson (1982) for the derivation.)

Scholar articles

Reverse-time diffusion equation models

BDO Anderson - Stochastic Processes and their Applications, 1982

Cited by 390 Related articles All 6 versions

⁵Brian Anderson, *Reverse-time diffusion equation models*, Stochastic Processes and their Applications 12 (1982)

Score Matching

• The key quantity for the reverse SDE is the (time-dependent) score function

$$\nabla_x \log p(\cdot, \cdot) : \mathbb{R}^d \times [0, T] \mapsto \mathbb{R}^d,$$

Therefore, we can easily reverse the process if the score function is known.

Score Matching

The key quantity for the reverse SDE is the (time-dependent) score function

$$\nabla_x \log p(\cdot, \cdot) : \mathbb{R}^d \times [0, T] \mapsto \mathbb{R}^d,$$

Therefore, we can easily reverse the process if the score function is known.

• Model: Let $s_{\theta}: \mathbb{R}^d \times [0,T] \mapsto \mathbb{R}^d$ be a neural network to model the score function.

Score Matching

The key quantity for the reverse SDE is the (time-dependent) score function

$$\nabla_x \log p(\cdot, \cdot) : \mathbb{R}^d \times [0, T] \mapsto \mathbb{R}^d,$$

Therefore, we can easily reverse the process if the score function is known.

- **Model:** Let $s_{\theta}: \mathbb{R}^d \times [0,T] \mapsto \mathbb{R}^d$ be a neural network to model the score function.
- Training objective: Let $p_t = p(\cdot, t)$ and

$$L_t(\theta) = \mathbb{E}_{x \sim p_t} \left[\|s_{\theta}(x, t) - \nabla_x \log p(x, t)\|^2 \right].$$

Let π be a (weighted) distribution supported on [0,T]. Consider the learning via

$$\min_{\theta} L(\theta) := \mathbb{E}_{t \sim \pi}[L_t(\theta)] \qquad \text{(score matching)}. \tag{6}$$

Score Matching (Cont'd)

- Why is this objective informative for training? The problem nearly becomes a sequential of supervised learning: Score matching at different times.
- Bad News: $\nabla_x \log p(\cdot, t)$ is unknown. What available are noisy samples $\{x_t\}_{t \in [0,T]}$ generated by the forward process.

Denoising Score Matching

Simplifying the objective using the **log-derivative trick**:

$$L_{t}(\theta) = \mathbb{E}_{x \sim p_{t}} \left[\|s_{\theta}(x,t) - \nabla_{x} \log p(x,t)\|^{2} \right]$$

$$= \mathbb{E}_{x \sim p_{t}} \|s_{\theta}(x,t)\|^{2} + \mathbb{E}_{x \sim p_{t}} \|\nabla_{x} \log p(x,t)\|^{2} - 2\mathbb{E}_{x \sim p_{t}} \langle s_{\theta}(x,t), \nabla_{x} \log p(x,t) \rangle$$

$$= \mathbb{E}_{x \sim p_{t}} \|s_{\theta}(x,t)\|^{2} + \mathbb{E}_{x \sim p_{t}} \|\nabla_{x} \log p(x,t)\|^{2} - 2\int_{\mathbb{R}^{d}} \langle s_{\theta}(x,t), \nabla_{x} p(x,t) \rangle dx$$

$$= \mathbb{E}_{x \sim p_{t}} \|s_{\theta}(x,t)\|^{2} + \mathbb{E}_{x \sim p_{t}} \|\nabla_{x} \log p(x,t)\|^{2} + 2\int_{\mathbb{R}^{d}} [\nabla \cdot s_{\theta}(x,t)] p(x,t) dx.$$

Note that the conditional distribution $p_t(x|z)$ is tractable.

Denoising Score Matching

Simplifying the objective using the **log-derivative trick**:

$$L_{t}(\theta) = \mathbb{E}_{x \sim p_{t}} \left[\|s_{\theta}(x,t) - \nabla_{x} \log p(x,t)\|^{2} \right]$$

$$= \mathbb{E}_{x \sim p_{t}} \|s_{\theta}(x,t)\|^{2} + \mathbb{E}_{x \sim p_{t}} \|\nabla_{x} \log p(x,t)\|^{2} - 2\mathbb{E}_{x \sim p_{t}} \langle s_{\theta}(x,t), \nabla_{x} \log p(x,t) \rangle$$

$$= \mathbb{E}_{x \sim p_{t}} \|s_{\theta}(x,t)\|^{2} + \mathbb{E}_{x \sim p_{t}} \|\nabla_{x} \log p(x,t)\|^{2} - 2\int_{\mathbb{R}^{d}} \langle s_{\theta}(x,t), \nabla_{x} p(x,t) \rangle dx$$

$$= \mathbb{E}_{x \sim p_{t}} \|s_{\theta}(x,t)\|^{2} + \mathbb{E}_{x \sim p_{t}} \|\nabla_{x} \log p(x,t)\|^{2} + 2\int_{\mathbb{R}^{d}} [\nabla \cdot s_{\theta}(x,t)] p(x,t) dx.$$

Note that the conditional distribution $p_t(x|z)$ is tractable. Noting that $p(x,t) = \int p_t(x|z) p_0(z) \, \mathrm{d}z$, we have

$$\begin{split} \int_{\mathbb{R}^d} [\nabla \cdot s_{\theta}(x,t)] p(x,t) \, \mathrm{d}x &= \int_{\mathbb{R}} p_0(z) \, \mathrm{d}z \int_{\mathbb{R}^d} [\nabla \cdot s_{\theta}(x,t)] p_t(x|z) \, \mathrm{d}x \\ &= -\int_{\mathbb{R}} p_0(z) \, \mathrm{d}z \int_{\mathbb{R}^d} \langle s_{\theta}(x,t), \nabla_x p_t(x|z) \rangle \, \mathrm{d}x \\ &= -\int_{\mathbb{R}} p_0(z) \, \mathrm{d}z \int_{\mathbb{R}^d} \langle s_{\theta}(x,t), \nabla_x \log p_t(x|z) \rangle p_t(x|z) \, \mathrm{d}x \\ &= -\mathbb{E}_{z \sim p_0} \mathbb{E}_{x \sim p_t(\cdot|z)} \left[\langle s_{\theta}(x,t), \nabla_x \log p_t(x|z) \rangle \right] \end{split}$$

Denoising Score Matching (Cont'd)

According the preceding derivation, we have

$$L_t(\theta) = \mathbb{E}_{x \sim p_t} \left[\|s_{\theta}(x, t) - \nabla_x \log p(x, t)\|^2 \right]$$

$$= \mathbb{E}_{z \sim p_0} \mathbb{E}_{x \sim p_t(\cdot|z)} \|s_{\theta}(x, t)\|^2 - 2\mathbb{E}_{z \sim p_0} \mathbb{E}_{x \sim p_t(\cdot|z)} \left[\langle s_{\theta}(x, t), \nabla_x \log p_t(x|z) \rangle \right] + C$$

$$= \mathbb{E}_{z \sim p_0} \mathbb{E}_{x \sim p_t(\cdot|z)} \left[\|s_{\theta}(x, t) - \nabla_x \log p_t(x|z)\|^2 \right] + C$$

Consider the DDPM-type forward process and let $\alpha_t = e^{-t/2}$ and $\sigma_t^2 = 1 - e^{-t}$. Then,

$$p_t(x|x_0) \propto \exp\left(-\frac{\|x - \alpha_t x_0\|^2}{2\sigma_t^2}\right).$$

Thus, we have

$$L_t(\theta) = \mathbb{E}_{x_0} \mathbb{E}_{x_t \mid x_0} \left[\left\| s_{\theta}(x_t, t) - \frac{x_t - \alpha_t x_0}{\sigma_t^2} \right\|^2 \right]$$

The Denosing Interpretation

In a summary, the total objective becomes

$$L(\theta) = \mathbb{E}_t \mathbb{E}_{x_0} \mathbb{E}_{x_t \mid x_0} \left[\left\| s_{\theta}(x_t, t) - \frac{x_t - \alpha_t x_0}{\sigma_t^2} \right\|^2 \right]$$
 (7)

The Denosing Interpretation

In a summary, the total objective becomes

$$L(\theta) = \mathbb{E}_t \mathbb{E}_{x_0} \mathbb{E}_{x_t \mid x_0} \left[\left\| s_{\theta}(x_t, t) - \frac{x_t - \alpha_t x_0}{\sigma_t^2} \right\|^2 \right]$$
 (7)

Noting that $x_t|x_0 \sim \mathcal{N}(\alpha_t x_0, (1-\alpha_t)I_d)$, we can rewrite

$$x_t = \alpha_t x_0 + \sqrt{1 - \alpha_t^2 \xi_t} = \alpha_t x_0 + \sigma_t \xi_t$$
 with $\xi_t \sim \mathcal{N}(0, I_d)$.

Plugging it back into (7) gives the **denoising score matching** objective:

$$L(\theta) = \mathbb{E}_t \mathbb{E}_{x_0} \mathbb{E}_{\xi_t \sim \mathcal{N}(0, I_d)} \left[\left\| s_{\theta}(x_t, t) - \frac{\xi_t}{\sigma_t} \right\|^2 \right]$$

Training procedure

$$L(\theta) = \mathbb{E}_t \mathbb{E}_{x_0} \mathbb{E}_{\xi_t \sim \mathcal{N}(0, I_d)} \left[\left\| s_{\theta}(x_t, t) - \frac{\xi_t}{\sigma_t} \right\|^2 \right]$$

Parameterize s_{θ} with neural networks. Then, SGD of batch size 1 for each iteration updates as follows:

- Step 1: $t \sim \pi, x_0 \sim p_0, \xi_t \sim \mathcal{N}(0, I_d)$
- Step 2: $\alpha_t = e^{-t/2}, x_t = \alpha_t x_0 + \sqrt{1 \alpha_t} \xi_t$
- Step 3: $\hat{L}(\theta) = \left\| s_{\theta}(x_t, t) \frac{\xi_t}{\sigma_t} \right\|^2$
- Step 4: $\theta_{t+1} = \theta_t \eta \nabla_{\theta} \hat{L}(\theta_t)$

The Choice of Time Weighting

How to choose π ?

$$L(\theta) = \mathbb{E}_{t \sim \pi} \mathbb{E}_{x_0} \mathbb{E}_{\xi_t \sim \mathcal{N}(0, I_d)} \left[\left\| s_{\theta}(x_t, t) - \frac{\xi_t}{\sigma_t} \right\|^2 \right]$$

Key observation: When $t \to 0$, $\sigma_t = \sqrt{1 - e^{-t}} \to 0$. Loss heavily amplified when sampling t close to 0. High variance!

The Choice of Time Weighting

How to choose π ?

$$L(\theta) = \mathbb{E}_{t \sim \pi} \mathbb{E}_{x_0} \mathbb{E}_{\xi_t \sim \mathcal{N}(0, I_d)} \left[\left\| s_{\theta}(x_t, t) - \frac{\xi_t}{\sigma_t} \right\|^2 \right]$$

Key observation: When $t \to 0$, $\sigma_t = \sqrt{1 - e^{-t}} \to 0$. Loss heavily amplified when sampling t close to 0. High variance!

• Training with **time cut-off** η :

$$\pi = \mathrm{Unif}([\eta, T]).$$

Variance reduction via importance sampling:

$$\pi(t) \propto \frac{1}{\sigma_t^2}$$
.

Probability Flow ODE

The reverse SDE is given by

$$d\tilde{x}_t = \left[f(\tilde{x}_t, t) - g^2(t) \nabla_x \log p(\tilde{x}, t) \right] dt + g(t) d\bar{B}_t,$$

(Song et al. 2021) showed that the following probability-flow ODE is also a reverse process

$$d\tilde{x}_t = f(\tilde{x}_t, t) - \frac{1}{2}g^2(t)\nabla_x \log p(\tilde{x}, t) dt.$$

For the DDPM-type forward process, it becomes

$$\mathrm{d}\tilde{x}_t = -\frac{1}{2}(x_t + \nabla_x \log p(\tilde{x}, t)) \,\mathrm{d}t$$

The probability-flow ODE can be interpreted as a continuous-time normalizing flow (CNF).

A Schematic Comparison

Figure 2: (Up) SDE; (Down) ODE.

Faster Sampling

- For diffusion models, generating new samples needs to discretize the revise-time SDE. It is
 often very slow as we need to take small step size for reducing discretization error and
 numerical stability.
 - For SDEs, in general, there does not exist higher-order solver as the trajectory is non-differentiable almost everywhere.
 - Deterministic ODE enables the use of advanced higher-order ODE solvers such as Runge-Kutta, thereby speeding up the generation of new samples.

Exact Likelihood Computation ⁶

Consider the continuous-time normalizing flow generated by the ODE

$$\dot{x}_t = f(x_t, t), t \in [0, T]$$

with initial condition $x_0 \sim p_0$.

• Consider the flow map $\Phi_T : \mathbb{R}^d \mapsto \mathbb{R}^d$ defined by $\Phi_T(x_0) = x_T$. Then, we have the log-likelihood of p_T satisfies (with the derivation left as homework)

$$\log p_T(x_T) = \log p_0(x_0) - \int_0^T \nabla \cdot f(x_t, t) dt.$$

• In practice, $\nabla \cdot f(x,t)$ is estimated using the Skilling-Hutchinson trace estimator:

$$\underbrace{\nabla_x \cdot f(x_t, t)}_{\text{need } d \text{ gradients}} = \mathbb{E}_{\epsilon}[\epsilon^T \nabla_x f(x, t) \epsilon] \approx \underbrace{\frac{1}{m} \sum_{j=1}^m \epsilon_j \cdot \nabla_x (f(x, t) \cdot \epsilon_j)}_{\text{need only } m \text{ gradients}},$$

where
$$\mathbb{E}[\epsilon] = 0$$
 and $\mathbb{E}[\epsilon \epsilon^{\top}] = I_d$.

⁶For generality, we assume normal time direction in this slide.

Manipulating the Latent Space

Interpolation

Controllable Generalization

Generate one-class of samples

Text to Images

L You 请画一幅暴雪中的长城景色

请用八大山人的风格重绘这幅画,不要改变内容,只改变风格。请注意留白和落款, 不用输出任何文字描述。

6 ChatGPT

○ ChatGPT

Some Classical Tasks

ullet Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.

- Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.
- Baye's rule: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$. Accordingly, the score function:

$$\nabla \log P(x|y) = \nabla \log P(y|x) + \nabla \log P(x) \tag{8}$$

where the normalizing constant disappears.

- Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.
- Baye's rule: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$. Accordingly, the score function:

$$\nabla \log P(x|y) = \nabla \log P(y|x) + \nabla \log P(x) \tag{8}$$

where the normalizing constant disappears.

 We can use Langevin dynamics to simulate it. But we can directly couple (8) with the reverse-time SDE or ODE:

$$\dot{\tilde{x}}_t = f(\tilde{x}_t, t) - \frac{1}{2}g(t)^2 \log p_t(\tilde{x}|y)$$

$$= f(\tilde{x}_t, t) - \frac{1}{2}\nabla_x \left[\log p(\tilde{x}_t, t) + \log p(y|\tilde{x}_t)\right].$$

- Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.
- Baye's rule: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$. Accordingly, the score function:

$$\nabla \log P(x|y) = \nabla \log P(y|x) + \nabla \log P(x) \tag{8}$$

where the normalizing constant disappears.

 We can use Langevin dynamics to simulate it. But we can directly couple (8) with the reverse-time SDE or ODE:

$$\dot{\tilde{x}}_t = f(\tilde{x}_t, t) - \frac{1}{2}g(t)^2 \log p_t(\tilde{x}|y)$$

$$= f(\tilde{x}_t, t) - \frac{1}{2}\nabla_x \left[\log p(\tilde{x}_t, t) + \log p(y|\tilde{x}_t)\right].$$

• Therefore, as long as we have a good "classifier" p(y|x), then we can couple it with the unconditional model $s_{\theta}(x,t) \approx \nabla \log p(x,t)$ in a very **easy and principled** approach.

- Controlled generalization can be modeled as sampling from P(x|y) where y denotes the control factor.
- Baye's rule: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$. Accordingly, the score function:

$$\nabla \log P(x|y) = \nabla \log P(y|x) + \nabla \log P(x) \tag{8}$$

where the normalizing constant disappears.

 We can use Langevin dynamics to simulate it. But we can directly couple (8) with the reverse-time SDE or ODE:

$$\dot{\tilde{x}}_t = f(\tilde{x}_t, t) - \frac{1}{2}g(t)^2 \log p_t(\tilde{x}|y)$$

$$= f(\tilde{x}_t, t) - \frac{1}{2}\nabla_x \left[\log p(\tilde{x}_t, t) + \log p(y|\tilde{x}_t)\right].$$

- Therefore, as long as we have a good "classifier" p(y|x), then we can couple it with the unconditional model $s_{\theta}(x,t) \approx \nabla \log p(x,t)$ in a very **easy and principled** approach.
- One unconditional models for all tasks.

Connection with energy-based models

- In EBM, $p(x) = e^{-U(x)}/Z$. We learn a potential energy $V_{\theta}(x) \approx U(x)$.
- In score-based models, we learn $s_{\theta}(x) \approx \nabla_x \log p(x) = -\nabla_x U(x)$, i.e., the **force**.
- With the score functions (aka. the force field), we can also recover samples by running Langevin dynamics

$$dx_t = -\nabla_x \log p(x_t) dt + \sqrt{2} dB_t.$$

But its performance is notorious and consequently, using the reverse-time ${\sf SDE/ODE}$ is always much better.

Naive Score Matching + Langevin Dynamics

Often, the learned score function is useless when simulating Langevin dynamics.

CIFAR-10 data

Model samples

Explanation

The learned score function are inaccurate in the low-density region.

$$L(\theta) = \mathbb{E}_x ||s_{\theta}(x) - \nabla \log p(x)||^2.$$

