Diffusion Models and Score Matching

Instructor: Lei Wu 1!

Mathematical Introduction to Machine Learning

Peking University, Fall 2023

1School of Mathematical Sciences; Center for Machine Learning Research

1/32

https://cmlr.pku.edu.cn/

What is Diffusion?

Dye
Molecules

Water
Molecules

Equilibrium

Dye molecules diffuse throughout the entire space by colliding with water molecules

2/32

Mathematical Modeling: Brownian Motion

® Let {z)}r>0 be the trajectory of dye molecules. We can model its dynamics as follows
Tpy1 = Tk + /1ks 0<ELSN-1,

where &, Y A7(0,1) and 7 is a small factor 2.

277 depends on the temperature, time unit, etc.
3/32

Mathematical Modeling: Brownian Motion

® Let {z)}r>0 be the trajectory of dye molecules. We can model its dynamics as follows
Tpy1 = Tk + /1ks 0<ELSN-1,

where &, Y A7(0,1) and 7 is a small factor 2.
® Thus, we have after IV steps

N-1

xN,,:xo—l—\/ﬁZﬁkNN(zo,nN).

k=0

277 depends on the temperature, time unit, etc.
3/32

Mathematical Modeling: Brownian Motion

® Let {z)}r>0 be the trajectory of dye molecules. We can model its dynamics as follows
Th+1 = Tk + 1k, 0<ELSN-1,
where &, Y A7(0,1) and 7 is a small factor 2.
® Thus, we have after IV steps

N-1

xN,,:xo—l—\/ﬁZﬁkNN(zo,nN).

k=0
® Consider the continuous-time limit: n — 0. Let t = N7. Then, we have

TNy — Xt NN(XQ,t).

277 depends on the temperature, time unit, etc.
3/32

Mathematical Modeling: Brownian Motion

Let {zx}r>0 be the trajectory of dye molecules. We can model its dynamics as follows
Th+1 = Tk + 1k, 0<ELSN-1,

where &, Y A7(0,1) and 7 is a small factor 2.

® Thus, we have after IV steps

N-1

xN,,:xo—l—\/ﬁZﬁkNN(zo,nN).

k=0

Consider the continuous-time limit: 7 — 0. Let ¢ = Nn. Then, we have

TNy — Xt NN(XQ,t).

We call B; := X; — Xy Brownian motion.

277 depends on the temperature, time unit, etc.

3/32

Important properties of Brownian motion

® After time t, dye molecules only move O(v/1)
E[B] =0, E[B}]=t.

position versus time in 2D

Y Position

X Position

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

4/32

https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

Important properties of Brownian motion

® After time t, dye molecules only move O(v/1)
E[B] =0, E[B}]=t.

® B, — B, and B; are independent.

position versus time in 2D

Y Position

X Position

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

4/32

https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

Important properties of Brownian motion

® After time t, dye molecules only move O(v/1)
E[B] =0, E[B}]=t.

® B, — B, and B; are independent.
® The trajectory is continuous but non-differentiable almost everywhere.

position versus time in 2D

Y Position

X Position

Figure 1: A animation of Brownian motion: https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

4/32

https://physics.bu.edu/~duffy/HTML5/brownian_motion.html

General diffusion process (modeled by Ito-SDE)

Consider dye molecules in a force field f(x,¢) and the collision is heterogeneous:
® From ¢ to t + 1, the dye molecule moves according to

Ty — ¢ = f(2,)0+ 0 (24, 1) /1t -
—_— ——

drift diffusion

5/32

General diffusion process (modeled by Ito-SDE)

Consider dye molecules in a force field f(x,¢) and the collision is heterogeneous:
® From ¢ to t + 1, the dye molecule moves according to

Ty — ¢ = f(2,)0+ 0 (24, 1) /1t -
—_— ——

drift diffusion

e Taking n — 0 gives a stochastic differential equation (SDE):

dzy = f(xy,t) dt + o (x4, t) dBy

5/32

General diffusion process (modeled by Ito-SDE)

Consider dye molecules in a force field f(x,t) and the collision is heterogeneous:
® From ¢ to t + 1, the dye molecule moves according to

Ty — ¢ = f(2,)0+ 0 (24, 1) /1t -
—_— ——

drift diffusion

e Taking n — 0 gives a stochastic differential equation (SDE):
dzy = f(xy,t) dt + o (x4, t) dBy
In physics, it is often written (by let w; = Bt) as
T = f(xe,t) + o (e, t)wy,

where wy is often referred to as white noise.

5/32

A comparison between SDE and ODE 3

Wiener Process

Stochastic Differential Equation (SDE):
(Gaussian

Ordinary Differential Equation (ODE):
d d
& _ f(x,t) or dx =f(x,t)dt & f(x,8) + 0(X,t)w; - Cmmm— Faussic
dt dt White Noise)
_— —— s
X drift coefficient diffusion coefficient
(dx = f(x,t)dt + o(x, t)dw;) wio
X
t
i t
’é’;{i‘b{%ﬁl x(t) = x(0) +/0 f(x,7)dr
Iterative t
I\éurln?rical x(t + At) =~ x(t) + £(x(t),) At x(t+ At) = x(t) + £(x(¢), t) At 4+ o (x(t), t) VAL N (0,)
olution:
6/32

3taken from https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/

Langevin Dynamics

¢ (Over-damped) Langevin dynamics is a special SDE with the drift term given by a
potential force f(z) = —VU(z):
da:t = —VU(.’L't) dt + V 26_1 dBt (1)
Denote by p; = p(t,-) = Law(X;). Then, we have
6—/3(/"(:1:)

t,x
])(?1)_> Z

as t — 00. (2)

7/32

Langevin Dynamics

¢ (Over-damped) Langevin dynamics is a special SDE with the drift term given by a
potential force f(z) = —VU(z):
da:t = —VU(.Z't) dt + V 26_1 dBt (1)
Denote by p; = p(t,-) = Law(X;). Then, we have

6—/3(/"(:1:)
p(t,z) — 7 s t — oo. (2)

® To simulate (1), we can apply the Euler-Maruyama scheme:

X1 = X — VU(Xk)T] + 2‘3717/&@ with & ~ N(O,Id). (3)

7/32

Langevin Dynamics

¢ (Over-damped) Langevin dynamics is a special SDE with the drift term given by a

potential force f(z) = —VU(z):

da:t = —VU(.Z't) dt + V 26_1 dBt
Denote by p; = p(t,-) = Law(X;). Then, we have
6—/3(:"(:}:)

Z

p(t,x) — as t — o0.

® To simulate (1), we can apply the Euler-Maruyama scheme:

X1 = Xy — VU(Xp)n + /287108, with & ~ N(0, Iq).

® Ornstein—Uhlenbeck (OU) process is a simplest SDE given by
det = —th dt+o dBt,

for which U(z) = 0||z|?/2, 37! = 0% /2. The equilibrium distribution is Gaussian:

Poo() o< exp (W>

202

7/32

Diffusion Models

In diffusion models

e We first gradually inject noise to a sample until it becomes pure noise. This is a diffusion
process!!

® The generative models are (probabilistic) inverse of the forward process.

Fixed forward diffusion process

Data Noise

€

Generative reverse denoising process

8/32

Diffusion Models

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

Why are diffusion models powerful?

® Guide the learning of reverse generative denoise process with the information of a fixed
forward diffusion process!

® GAN, Normalizing flow, and Variational Autoencoder do not have forward-process
information to guide the learning. [Explain it!]

8/32

Diffusion Models

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

There are two key issues in diffusion models:
® Construct forward diffusion process.

® Utilize forward information for learning the reverse process.

8/32

Denoising Diffusion Probabilistic Models (DDPM) *

® DDPM chooses the following variance-preserving forward diffusion process:

Tht1 = V1= Bexr + Bk, 0 <k <N -1,

where &, " N(0, 1,).

4Jonathan Ho, Ajay Jain, Pieter Abbeel, Denoising Diffusion Probabilistic Models, NeurlPS 2020.

9/32

Denoising Diffusion Probabilistic Models (DDPM) *

® DDPM chooses the following variance-preserving forward diffusion process:
Tpt1 = V1= Brok + / Brk, 0 <k < N —1,

where &, " N(0, 1,).
® Consider 8, = 8 = o0(1). Then, we have

x
Tyl = Tk — % +v/Bé + o(B) (4)
When 3 — 0, we have the forward process is given by an OU process

dz, = —% At + dB,.

4Jonathan Ho, Ajay Jain, Pieter Abbeel, Denoising Diffusion Probabilistic Models, NeurlPS 2020.

9/32

Properties of the forward process
® First, the conditional distribution is always Gaussian

Py = ay|wg ~ N(e " Pao,(1— e ")g) =N <Oét$o, Ve OétZId> ; (5)

—t/2

where a; = e~/2. We also denote o7 := 1 — o?. (Derivation is given on the blackboard.)

10/32

Properties of the forward process

® First, the conditional distribution is always Gaussian

Py = ay|wg ~ N(e " Pao,(1— e ")g) =N <Oét$o, Ve OétZId> ; (5)

~t/2. We also denote 07 := 1 — . (Derivation is given on the blackboard.)

where oy = e
® The distribution of x; can be viewed as the convolution of P(z() with a Gaussian
smoothing kernel:

2
_ llz—agzgll

1 g
Pt((l?) :/Pt($|I0)P(I’0) d$0 :/P(Io)ae 2(1—ag) dl‘o,

where CY is the normalizing constant.

10/32

Properties of the forward process

® First, the conditional distribution is always Gaussian

Py = ay|wg ~ N(e " Pao,(1— e ")g) =N <Oét$o, Ve OétZId> ; (5)

—t/2

where a; = e~/2. We also denote o7 := 1 — o?. (Derivation is given on the blackboard.)

® The distribution of x; can be viewed as the convolution of P(z() with a Gaussian
smoothing kernel:

2
_ llz—agzgll

1 g
Pt((l?) :/Pt($|I0)P(I’0) d$0 :/P(Io)ae 2(=af) dl‘o,

where CY is the normalizing constant.
® The forward process converges exponentially fast:

Dy, (BN (0, I4)) < Ce™" Dy, (Bo||N (0, 1a))
This means we can take a moderately large T such that

Law(:z:T) ~ N(O, [d)

10/32

Reversing a Diffusion Process

What do we mean by reversing a diffusion process?

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

11/32

Reversing a Diffusion Process

What do we mean by reversing a diffusion process?

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

Definition 1
Given a forward process { X }+c(o,7, the backward process {Xt}te[T,O] is said to a reverse
process of { X }iejo,r) iff

Law(X;) = Law(Xp_¢).

Remark: The reverse process may be non-unique.

11/32

An Explicit Construction of Reverse Processes

® Consider a large family of diffusion process given by the forward SDE:

dzy = f(z,t)dt + g(t)dB;, 0<¢<T.

5Brian Anderson, Reverse-time diffusion equation models, Stochastic Processes and their Applications 12
(1982)

12/32

An Explicit Construction of Reverse Processes

® Consider a large family of diffusion process given by the forward SDE:
dzy = f(z,t)dt + g(t)dB;, 0<¢<T.
® Anderson (1982) ° provided an explicit construction of the reverse SDE:

A = [f(Z4,) — ¢* () V. log p(z, 1)) dt + g(t) dBy, t € [T,0]

where B is a backward Brownian motion and the time in the above equation is negative.

(The proof can be easily completed by checking the Fokker-Planck equation (omitted).

We refer to Anderson (1982) for the derivation.)

Total citations Cited by 390
5 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Scholar articles Reverse-time diffusion equation models
BDO Anderson - Stochastic Processes and their Applications, 1982
Cited by 390 Related articles All 6 versions

5Brian Anderson, Reverse-time diffusion equation models, Stochastic Processes and their Applications 12
(1982)

12/32

Score Matching

® The key quantity for the reverse SDE is the (time-dependent) score function
Ve Ing('a) : Rd X [05 T] = Rd7

Therefore, we can easily reverse the process if the score function is known.

13/32

Score Matching

® The key quantity for the reverse SDE is the (time-dependent) score function
Ve Ing('a) : Rd X [05 T] = Rd7

Therefore, we can easily reverse the process if the score function is known.
® Model: Let s : R? x [0,7] — R? be a neural network to model the score function.

13/32

Score Matching

® The key quantity for the reverse SDE is the (time-dependent) score function
V. logp(-,-) : R x [0, T] = RY,

Therefore, we can easily reverse the process if the score function is known.
® Model: Let sg : R? x [0,7] — R? be a neural network to model the score function.
® Training objective: Let p; = p(-,t) and

Li(8) = Eqgnp, [|Iso(z,t) = Vg logp(x,t)||2] .
Let 7 be a (weighted) distribution supported on [0, T]. Consider the learning via

mein L(0) := Emrn[Le(0)] (score matching). (6)

Fixed forward diffusion process

Noise

Generative reverse denoising process

13/32

Score Matching (Cont’d)

® Why is this objective informative for training? The problem nearly becomes a sequential of
supervised learning: Score matching at different times.

* Bad News: V,logp(-,t) is unknown. What available are noisy samples {z: }+c(o,7]
generated by the forward process.

14/32

Denoising Score Matching
Simplifying the objective using the log-derivative trick:

Li(0) = Eyrp, [lls0(2,t) — Vo logp(z,)]
=E,p, Hsg(m,t)||2 +Egmp, || Va log p(z, t)H2 —2E,p, (s0(z,t), Vylog p(x, 1))

=Eyp, |Iso(z, t)||2 +Egmp, || Vs log p(z, t)H2 — 2/ 1<$9(.’L', t), Vop(x,t)) de
JRe

= Eanp, 150 (2,)1 + Eang, [V log p(a,)| + 2/ [V so(z,t)]p(z, ¢) da.
JRe

Note that the conditional distribution p;(z|z) is tractable.

15/32

Denoising Score Matching
Simplifying the objective using the log-derivative trick:

Lt(0) = Eonp, [lIs0(,t) = Valogp(w, t)]?]
==]Ezwpt HSG(x; t)”Q + Emwpt Hvz Ing(xv t) H2 - 2]E~’L‘Npt <50(1"7 t)v v-’L‘ logp(i t>>

=]Eﬂc"‘Pt HSQ(i,t)HZ + E-’ENPt Hv% 10gp(l’,t)H2 - 2/ <59(.’I:,t)7 vll)])(‘/l’.f t)> dl"
R4

= Eonp,150(2,)] + Eanyp, | Vo log p(a, 1) +2/R [V - so(a, t)]p(x, 1) da.

Note that the conditional distribution p;(x|z) is tractable. Noting that
= [pi(z 2)dz, we have

/Rd[v.s@@,t)]p(m,t) dx:/]Rpo(z) dzAd[V~89(x,t)]pt(x|z) dz

_ _/IR o(2) dz/Rd<59(x,t),Vmpt(x|z)>da:

_ / po(z) dz / (50(2. 1), V. log py (2]2))pi(z]2) da
R R4

= —E

~EznpoEBonp, (12) [(86(, 1), V. log pi(|2))]

15/32

Denoising Score Matching (Cont’d)

According the preceding derivation, we have

Lt(e) =Esznp, [HS@(x,t) -V, Ing(xat)Hﬂ
= EempoEanp, (12 150(2,)1 = 2EopyEamp, (2) [(s0(2, 1), Vo log p(]2))] + C
=]EzwpUEw'vpt(-\z) [”39(-77775) -V, 10gpt(£|z)|‘2] +C

Consider the DDPM-type forward process and let oy = e~%/? and 07 = 1 — e~ *. Then,

_IIw—atxo|2>

pe(x|z0) X exp (507

Thus, we have

so(T4,t) — ———5—

Lt(e) = EM)EM\IO [

16/32

The Denosing Interpretation

In a summary, the total objective becomes

Ty — 04
so(xy,t) — %
t

L(0) = E{EyyEqg, |2 [

] (7)

17/32

The Denosing Interpretation

In a summary, the total objective becomes

Tt — Qo
Se(xt,t) — T
t

L(0) = E{EgEq, |2, [

1 (7)

Ty = oo + /1 — 028 = ayxo + 0u&y with & ~ N(0,).

Noting that zy|zg ~ N (axo, (1 — ay)ly), we can rewrite

Plugging it back into (7) gives the denoising score matching objective:

sg(x,t) .
t

L(0) = EtEvoEe, onr(0,10) [

17/32

Training procedure

&

Ot

L(0) = EtEyoEe, onr0,12) [so(xy,t) —

21
Parameterize sy with neural networks. Then, SGD of batch size 1 for each iteration updates as
follows:
® Step Lot~ T, Ty ~ pOagt NN(Ovjd)
Step 20 ay = e V2, 1y = auxo + VI — ardy
. 2
e Step 3: L() = Hs(g(act,t) - %

Step 4: 6,41 =0, — VoL (6;)

18/32

The Choice of Time Weighting

How to choose 77

L(Q) = EtwﬂEonEtNN(O,Id) [Se(l‘t,t) -

Key observation: When t — 0, 0, =1 — e~ — 0. Loss heavily amplified when sampling ¢
close to 0. High variance!

19/32

The Choice of Time Weighting

How to choose 77

L(0) = EirnEooEe,on(o,1,) [sg(we,t) — =

Key observation: When t — 0, 0, =1 — e~ — 0. Loss heavily amplified when sampling ¢
close to 0. High variance!

® Training with time cut-off 7:
7 = Unif([n, T)).

® Variance reduction via importance sampling:

19/32

Probability Flow ODE

The reverse SDE is given by
dz; = [f(ffta t) — g*(t) V. log p(, fﬂ dt + g(t) dB,
(Song et al. 2021) showed that the following probability-flow ODE is also a reverse process
1
dz, = f(3,t) — igz(t)v_,p log p(7,t) dt.
For the DDPM-type forward process, it becomes
- 1 -
dz, = —i(l‘t + V. logp(Z,t)) dt

The probability-flow ODE can be interpreted as a continuous-time normalizing flow (CNF).

20/32

A Schematic Comparison

w Forward diffusion process (fixed)

Reverse Generative Process q(XT)

Encoding with Probability Flow ODE

Generation with Probability Flow ODE

Figure 2: (Up) SDE; (Down) ODE.

21/32

Faster Sampling

® For diffusion models, generating new samples needs to discretize the revise-time SDE. It is
often very slow as we need to take small step size for reducing discretization error and
numerical stability.
® For SDEs, in general, there does not exist higher-order solver as the trajectory is
non-differentiable almost everywhere.
® Deterministic ODE enables the use of advanced higher-order ODE solvers such as
Runge-Kutta, thereby speeding up the generation of new samples.

22/32

Exact Likelihood Computation °

® Consider the continuous-time normalizing flow generated by the ODE

Q'S't = f(lL’t,t),t S [O,T]
with initial condition zg ~ pg.

® Consider the flow map @7 : R? s R? defined by ®7(z¢) = z7. Then, we have the
log-likelihood of pr satisfies (with the derivation left as homework)

T
log pr(2z7) = log po(zo) —/ V- fag,t) dt.
0

® In practice, V - f(z,t) is estimated using the Skilling-Hutchinson trace estimator:

Ve - f(zn,t) = BTV, (2, £)e] 77112_: &),

need d gradients

need only m gradients

where E[e] =0 and E[ee] = I,

SFor generality, we assume normal time direction in this slide.

23/32

Manipulating the Latent Space

Interpolation

Generation with Probability Flow ODE

24 /32

Controllable Generalization

25/32

Generate one-class of samples

class: bird class: deer

26/32

Text to Images

‘,'Wu

EE—IEREPHRES O You
BA/N\KUAMRBESXIEE, TEREAST, RBENE. BIEEAMER,
TFRMLEAX TR,

ChatGPT

@© chatGPT

27 /32

Some Classical Tasks

UOTJBZLIO[0)

LI

Sunureduy

uoryeI03sax HJ(

28/32

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.

29/32

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.

® Baye's rule:P(z|y) = %. Accordingly, the score function:
Vlog P(z|y) = Vlog P(y|x) + Vlog P(x) (8)

where the normalizing constant disappears.

29/32

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.
® Baye's rule:P(z|y) = %. Accordingly, the score function:

Vlog P(z|y) = Vlog P(y|x) + Vlog P(x) (8)

where the normalizing constant disappears.

® We can use Langevin dynamics to simulate it. But we can directly couple (8) with the
reverse-time SDE or ODE:

iy = f(Fe,t) — %g(t)%gpt(fly)

= f(@0,t) ~ 5V logp(E, 1) + logp(yli)]

29/32

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.

® Baye's rule:P(z|y) = %. Accordingly, the score function:
Vlog P(z|y) = Vlog P(y|x) + Vlog P(x) (8)

where the normalizing constant disappears.

® We can use Langevin dynamics to simulate it. But we can directly couple (8) with the
reverse-time SDE or ODE:

z - 1 -
Ty = f(Z,t) — 59@)2 log p¢(Z]y)
- 1 - -
= f(@,1) - ivm [log p(Z+,t) + log p(y|Z1)] -
® Therefore, as long as we have a good “classifier” p(y|z), then we can couple it with the

unconditional model sg(x,t) =~ Vlogp(z,t) in a very easy and principled approach.

29/32

Controllable Generalization via Diffusion Models

® Controlled generalization can be modeled as sampling from P(x|y) where y denotes the
control factor.

® Baye's rule:P(z|y) = %. Accordingly, the score function:
Vlog P(z|y) = Vlog P(y|x) + Vlog P(x) (8)

where the normalizing constant disappears.

® We can use Langevin dynamics to simulate it. But we can directly couple (8) with the
reverse-time SDE or ODE:

b= F(E 1)~ 3ot ogp(ily)
= f(@0,t) ~ 5V logp(E, 1) + logp(yli)]

® Therefore, as long as we have a good “classifier” p(y|z), then we can couple it with the
unconditional model sg(x,t) =~ Vlogp(z,t) in a very easy and principled approach.

® One unconditional models for all tasks.

29/32

Connection with energy-based models

* In EBM, p(z) = e~Y®) /Z. We learn a potential energy Vp(z) ~ U(z).
® In score-based models, we learn sg(x) = Vlogp(z) = —V,U(x), i.e., the force.

® With the score functions (aka. the force field), we can also recover samples by running

Langevin dynamics
dz; = =V, log p(z;) dt + V2 dB;.

But its performance is notorious and consequently, using the reverse-time SDE/ODE is
always much better.

30/32

Naive Score Matching + Langevin Dynamics

Often, the learned score function is useless when simulating Langevin dynamics.

CIFAR-10 data Model samples

31/32

Explanation

The learned score function are inaccurate in the low-density region.

L(0) = Eq|lse(x) — Vlog p(x)||*.

Data density Data scores Estimated scores

1
[P

[PAARTEORRS

32/32

