Transformer and Large Language
Models

Instructor: Lei Wu !

Mathematical Introduction to Machine Learning

Peking University, Fall 2023

1School of Mathematical Sciences; Center for Machine Learning Research
1/16

https://cmlr.pku.edu.cn/

Transformer

Transformers
® introduced in Attention is all you need
(Vaswani et al., NeurlPS 2017);
® have revolutionized NLP, CV, robotics
and many applications;
® have enabled the creation of powerful
LLMs such as GPT-4;

® hold the promise of unlocking the
potential for AGI (artificial general
intelligence).

2/16

https://arxiv.org/abs/1706.03762

Sequence Modeling

Define a natural nonlinear map of

X = (x1,22,...,&n) = Y = (Y1,Y2, .-, Yn)

® Recurrence
yi = f(zi,yi-1).

e Convolution
Yi = f(@Tim1, @4, Tig1).

® Attention (simplified)
yi=f sz‘,jmj ;
j=1

where P € R™*" is a stochastic matrix and may depend on X.

3/16

Attention Mechanism

Pre-transformer Attention:
® Attention in vision modeling.

® Attention in machine translation.

4/16

Attention Mechanism

Self-attention:

® Let X = (xy,...,x,) € R¥™ be our input sequence. A self-attention
ARV sy RTXT
outputs an attention matrix P = A(X). The most popular choice is
AX) =0 (WrX)" (WoX)) € R™™,

where

* Wk, Wq € R%ey*? are the key and query weight matrices, which are learned from data.
® o denotes the softmax normalization performed in a column-wise manner.

® |n this case, the attention weights are determined by the second-order correlation
among tokens. In principle, one can also propose other alternatives.

4/16

A Transformer Block

® A transformer block defines a sequence-to-sequence map

X = (wlvaa"'vxn) E]Rdxn =Y = (ylayQa"'ayn) GRdxn'
® This maps consists of two blocks:
Y = FF(X + MHA(X)),

where
® Multi-head attention (MHA)

H
MHA(X) := Z Wo n Wi, XAn(X),
h=1

where Wo i, Wy, € R¥" are learnable output and value matrices, respectively.
® Positional-wise feed-forward networks (FFN):

FF(Z) := (h(z1), h(22), ..., h(zn)) € RP*™.
In practice, h : R? — R? is often chosen to be a two-layer MLP with hidden size drr.
h(z) = W{ ReLU(Waz + b),
where W, W, € R¥F*? and b € R%.

5/16

Transformer

Input: Linear embedding to change the dimension of each token.

X = VX with V € Rmeaerxd,

Main block:
X =rFFO(XCD L maaA@ (X)), 1< <L

Ouput: The output format depends on the tasks. In classification, we may

F(X) = pa™),

where p can be either a linear layer or small MLP.

Architecure hyperparameters: dyodcl, 1, L, dikey , drr. In practice, a common choice
dFF = 4dmodela dkey = dmodel/H-

6/16

Positional Encoding (PE)

Transformers are still inherently permutationally invariant and we need to modify transformers
by injecting position information.

* Absolute positional encoding (APE): Let 7; € R denote the information for token i:
T, = XT;+ T,
® Learnable APE. _ _
® Sinusoidal APE: r; = (sin(i),cos(z’),sin(i/c),cos(i/c), .. ‘,sin(i/cm/d),Cos(i/czl/d)) € RY,

where c is constant, e.g. 1000.
* Relative positional encoding (RPE): Let E = (W X)T (WgX) € R,

A(X) = o(E + P),

where P = (h(j —1));; € R"*™. In T5 RPE chooses

t ift < B/2
B B log(i) .c B
h(t): 5"‘7 \‘IOg(}szz)J |f7§t§D

B-1 ift>D

7/16

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.
¢ Definition: Process of converting text into tokens (small units) before feeding it into a
model.
® Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

8/16

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

¢ Definition: Process of converting text into tokens (small units) before feeding it into a
model.

® Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization
® Word-level Tokenization: Splits text into individual words.

"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

8/16

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

¢ Definition: Process of converting text into tokens (small units) before feeding it into a
model.

® Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization
® Word-level Tokenization: Splits text into individual words.
"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

¢ Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->
["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

8/16

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

¢ Definition: Process of converting text into tokens (small units) before feeding it into a
model.

® Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization
® Word-level Tokenization: Splits text into individual words.
"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

¢ Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->
["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

® Many other tokenizations. Libraries like NLTK, spaCy provide basic tokenization.
transformers library by Hugging Face for transformer-specific tokenization.

8/16

Cost Analysis

H
MHA(X) = X + Y Wo n Wy, X Ap(X),
h=1
FF(z) = WiReLU(Wax + b).

In practice, it is often choose
dH = dmodel/H7 dFF = 4dm0del~

e Storage: 4d2 .. + 8d% 4a
® Computation:
® MHA: 4nd? g0 + dmodern®

® FF: 8d2,,4am.-

Note that the tokenwise operations can be parallelized. The total cost depends on the
sequence length qudratically. This is especially bad for inference!!

9/16

Training

® Scaled dot-product attention
1
AX)=0¢ <d(WKX)T(WQX)> e R™*™,
® |ayer normalization:
X(f*l) — LN(X(Zfl))

X! =FF (f(“—l) + MHA(X“—”))

Residual connection.
AdamW optimizer with (8; = 0.9, 82 = 0.98) and gradient clipping.
Learning rate Warmup.

Cosine Warm-up Learning Rate Scheduler

Learning rate factor

0 250 500 750 1000 1250 1500 1750 2000
Iterations (in batches)

10/16

Readings

® The original paper https://arxiv.org/abs/1706.03762
® Annotated Transformer https://jalammar.github.io/illustrated-transformer/

® [llustrated Transformer https://nlp.seas.harvard.edu/annotated-transformer/

11/16

https://arxiv.org/abs/1706.03762
https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/annotated-transformer/

BERT

® Developed by Google.

® Bidirectional: Unlike traditional models that read text unidirectionally, BERT reads the
entire sequence of words at once.

e Layers: Typically 12 layers (BERT Base) or 24 layers (BERT Large).

12/16

BERT

® Developed by Google.

® Bidirectional: Unlike traditional models that read text unidirectionally, BERT reads the
entire sequence of words at once.

e Layers: Typically 12 layers (BERT Base) or 24 layers (BERT Large).

Pre-training Tasks:

® Masked Language Model (MLM): Randomly masks words in the sentence and predicts
them.

e Next Sentence Prediction (NSP): Predicts if a given sentence logically follows another.

12/16

BERT

® Developed by Google.

® Bidirectional: Unlike traditional models that read text unidirectionally, BERT reads the
entire sequence of words at once.

e Layers: Typically 12 layers (BERT Base) or 24 layers (BERT Large).

Pre-training Tasks:

® Masked Language Model (MLM): Randomly masks words in the sentence and predicts
them.

e Next Sentence Prediction (NSP): Predicts if a given sentence logically follows another.

Fine-tuning: Adapts pre-trained BERT for various downstream tasks like question answering,
sentiment analysis, etc.

12/16

GPT

® Next-token prediction (autoregressive model):

n
maXZlog P(zilzy, ..., ziz1).

=1

13/16

GPT

® Next-token prediction (autoregressive model):

n

maXZlog P(zilzy, ..., ziz1).

=1
® Text Generation:
text = [(bos)| or [some context]
while True:
logit = decoder(embed(text))
index = top(logit[—1])
token = vocabulary(index)
if token == (eos) :
break
text.append(token)

return text

13/16

Practice

® Pre-train models in large dataset. Fine-tune models on down-stream tasks.
® Fine-tuning needs to retrain our model, which is not user-friendly.

® Next-token prediction enables capability of doing in-context learning.
https://chat.openai.com/share/75d354d5-5a4d-4877-8aa2-04093506ca20

Prompt!

14/16

https://chat.openai.com/share/75d354d5-5a4d-4877-8aa2-04093506ca20

Vision Transformer (ViT)

Vision Transformer (ViT)

MLP \
Head

Transformer Encoder

|
- BRELELE 000

* Extra learnable
[class] embedding Linear Projection of Flattened Patches

g | ||||||,|,I
« |

M m ot

15/16

Summary

® Transformers or attention-based models are versitle in many applications.

® Next-token prediction is powerful and it implicitly performs multi-task learning. The
latter might be the major reason of why GPT is so successful.

16/16

