
Transformer and Large Language
Models

Instructor: Lei Wu 1

Mathematical Introduction to Machine Learning

Peking University, Fall 2023

1School of Mathematical Sciences; Center for Machine Learning Research
1 / 16

https://cmlr.pku.edu.cn/

Transformer

Transformers

• introduced in Attention is all you need
(Vaswani et al., NeurIPS 2017);

• have revolutionized NLP, CV, robotics
and many applications;

• have enabled the creation of powerful
LLMs such as GPT-4;

• hold the promise of unlocking the
potential for AGI (artificial general
intelligence).

2 / 16

https://arxiv.org/abs/1706.03762

Sequence Modeling

Define a natural nonlinear map of

X := (x1,x2, . . . ,xn) 7→ Y := (y1,y2, . . . ,yn)

• Recurrence
yi = f(xi,yi−1).

• Convolution
yi = f(xi−1,xi,xi+1).

• Attention (simplified)

yi = f

 n∑
j=1

Pi,jxj

 ,

where P ∈ Rn×n is a stochastic matrix and may depend on X.

3 / 16

Attention Mechanism

Pre-transformer Attention:

• Attention in vision modeling.

• Attention in machine translation.

4 / 16

Attention Mechanism

Self-attention:

• Let X = (x1, . . . ,xn) ∈ Rd×n be our input sequence. A self-attention

A : Rd×n 7→ Rn×n

outputs an attention matrix P = A(X). The most popular choice is

A(X) = σ
(
(WKX)>(WQX)

)
∈ Rn×n,

where
• WK ,WQ ∈ Rdkey×d are the key and query weight matrices, which are learned from data.
• σ denotes the softmax normalization performed in a column-wise manner.

• In this case, the attention weights are determined by the second-order correlation
among tokens. In principle, one can also propose other alternatives.

4 / 16

A Transformer Block

• A transformer block defines a sequence-to-sequence map

X = (x1,x2, . . . ,xn) ∈ Rd×n 7→ Y = (y1,y2, . . . ,yn) ∈ Rd×n.

• This maps consists of two blocks:

Y = FF(X + MHA(X)),

where
• Multi-head attention (MHA)

MHA(X) :=
H∑

h=1

WO,hW
T
V,hXAh(X),

where WO,h,Wv,h ∈ Rd×r are learnable output and value matrices, respectively.
• Positional-wise feed-forward networks (FFN):

FF(Z) := (h(z1), h(z2), . . . , h(zn)) ∈ Rd×n.

In practice, h : Rd 7→ Rd is often chosen to be a two-layer MLP with hidden size dFF.

h(z) =WT
1 ReLU(W2z + b),

where W1,W2 ∈ RdFF×d and b ∈ Rd.
5 / 16

Transformer

• Input: Linear embedding to change the dimension of each token.

X(0) = V X with V ∈ Rdmodel×d.

• Main block:
X` = FF(`)(X(`−1) + MHA(`)(X(`−1))), 1 ≤ ` ≤ L.

• Ouput: The output format depends on the tasks. In classification, we may

f(X) = p(x
(L)
1),

where p can be either a linear layer or small MLP.

• Architecure hyperparameters: dmodel, H, L, dkey , dFF. In practice, a common choice
dFF = 4dmodel, dkey = dmodel/H.

6 / 16

Positional Encoding (PE)

Transformers are still inherently permutationally invariant and we need to modify transformers
by injecting position information.

• Absolute positional encoding (APE): Let ri ∈ Rd denote the information for token i:

xi → xi + ri,

• Learnable APE.
• Sinusoidal APE: ri =

(
sin(i), cos(i), sin(i/c), cos(i/c), . . . , sin(i/c2i/d), cos(i/c2i/d)

)
∈ Rd,

where c is constant, e.g. 1000.

• Relative positional encoding (RPE): Let E = (WKX)T (WQX) ∈ Rn×n.

A(X) = σ(E + P),

where P = (h(j − i))i,j ∈ Rn×n. In T5 RPE chooses

h(t) =


t if t ≤ B/2
B
2 + B

2

⌊
log(D

B/2
)

log(D
B/2

)

⌋
if B

2 ≤ t ≤ D

B − 1 if t ≥ D

7 / 16

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

• Definition: Process of converting text into tokens (small units) before feeding it into a
model.

• Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization

• Word-level Tokenization: Splits text into individual words.

"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

• Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->

["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

• Many other tokenizations. Libraries like NLTK, spaCy provide basic tokenization.
transformers library by Hugging Face for transformer-specific tokenization.

8 / 16

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

• Definition: Process of converting text into tokens (small units) before feeding it into a
model.

• Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization

• Word-level Tokenization: Splits text into individual words.

"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

• Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->

["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

• Many other tokenizations. Libraries like NLTK, spaCy provide basic tokenization.
transformers library by Hugging Face for transformer-specific tokenization.

8 / 16

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

• Definition: Process of converting text into tokens (small units) before feeding it into a
model.

• Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization

• Word-level Tokenization: Splits text into individual words.

"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

• Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->

["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

• Many other tokenizations. Libraries like NLTK, spaCy provide basic tokenization.
transformers library by Hugging Face for transformer-specific tokenization.

8 / 16

Tokenization in NLP for Transformers

Before we do one-hot embedding, we need to tokenize natural language.

• Definition: Process of converting text into tokens (small units) before feeding it into a
model.

• Purpose: Makes the text interpretable for the model, facilitating further processing like
embedding and sequence modeling.

Types of Tokenization

• Word-level Tokenization: Splits text into individual words.

"Transformers are amazing!"" -> ["Transformers", "are", "amazing", "!"]

• Subword-level Tokenization: Breaks words into smaller pieces (subwords) for efficient
handling of unknown words and morphemes. Popular in transformers.

"Transformers are amazing!" ->

["Trans", "##form", "##ers", "are", "amaz", "##ing", "!"]

• Many other tokenizations. Libraries like NLTK, spaCy provide basic tokenization.
transformers library by Hugging Face for transformer-specific tokenization.

8 / 16

Cost Analysis

MHA(X) = X +

H∑
h=1

WO,hW
T
V,hXAh(X),

FF(x) =W1ReLU(W2x+ b).

In practice, it is often choose

dH = dmodel/H, dFF = 4dmodel.

• Storage: 4d2model + 8d2model

• Computation:
• MHA: 4nd2model + dmodeln

2

• FF: 8d2modeln.

Note that the tokenwise operations can be parallelized. The total cost depends on the
sequence length qudratically. This is especially bad for inference!!

9 / 16

Training

• Scaled dot-product attention

A(X) = σ

(
1√
dk

(WKX)>(WQX)

)
∈ Rn×n,

• Layer normalization:

X̃(`−1) = LN(X(`−1))

X` = FF
(
X̃(`−1) + MHA(X̃(`−1))

)
• Residual connection.
• AdamW optimizer with (β1 = 0.9, β2 = 0.98) and gradient clipping.
• Learning rate Warmup.

10 / 16

Readings

• The original paper https://arxiv.org/abs/1706.03762

• Annotated Transformer https://jalammar.github.io/illustrated-transformer/

• Illustrated Transformer https://nlp.seas.harvard.edu/annotated-transformer/

11 / 16

https://arxiv.org/abs/1706.03762
https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/annotated-transformer/

BERT

• Developed by Google.

• Bidirectional: Unlike traditional models that read text unidirectionally, BERT reads the
entire sequence of words at once.

• Layers: Typically 12 layers (BERT Base) or 24 layers (BERT Large).

Pre-training Tasks:

• Masked Language Model (MLM): Randomly masks words in the sentence and predicts
them.

• Next Sentence Prediction (NSP): Predicts if a given sentence logically follows another.

Fine-tuning: Adapts pre-trained BERT for various downstream tasks like question answering,
sentiment analysis, etc.

12 / 16

BERT

• Developed by Google.

• Bidirectional: Unlike traditional models that read text unidirectionally, BERT reads the
entire sequence of words at once.

• Layers: Typically 12 layers (BERT Base) or 24 layers (BERT Large).

Pre-training Tasks:

• Masked Language Model (MLM): Randomly masks words in the sentence and predicts
them.

• Next Sentence Prediction (NSP): Predicts if a given sentence logically follows another.

Fine-tuning: Adapts pre-trained BERT for various downstream tasks like question answering,
sentiment analysis, etc.

12 / 16

BERT

• Developed by Google.

• Bidirectional: Unlike traditional models that read text unidirectionally, BERT reads the
entire sequence of words at once.

• Layers: Typically 12 layers (BERT Base) or 24 layers (BERT Large).

Pre-training Tasks:

• Masked Language Model (MLM): Randomly masks words in the sentence and predicts
them.

• Next Sentence Prediction (NSP): Predicts if a given sentence logically follows another.

Fine-tuning: Adapts pre-trained BERT for various downstream tasks like question answering,
sentiment analysis, etc.

12 / 16

GPT

• Next-token prediction (autoregressive model):

max

n∑
i=1

logP (xi|x1, . . . , xi−1).

• Text Generation:

13 / 16

GPT

• Next-token prediction (autoregressive model):

max

n∑
i=1

logP (xi|x1, . . . , xi−1).

• Text Generation:

13 / 16

Practice

• Pre-train models in large dataset. Fine-tune models on down-stream tasks.

• Fine-tuning needs to retrain our model, which is not user-friendly.

• Next-token prediction enables capability of doing in-context learning.
https://chat.openai.com/share/75d354d5-5a4d-4877-8aa2-04093506ca20

• Prompt!

14 / 16

https://chat.openai.com/share/75d354d5-5a4d-4877-8aa2-04093506ca20

Vision Transformer (ViT)

15 / 16

Summary

• Transformers or attention-based models are versitle in many applications.

• Next-token prediction is powerful and it implicitly performs multi-task learning. The
latter might be the major reason of why GPT is so successful.

16 / 16

