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Let X1, . . . , Xn be i.i.d. random variables with expectation µ. Then,

E[
1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

E[Xi] = µ.

We are interested in when the empirical mean 1
n

∑n
i=1Xi will concentrate in µ.

• What conditions are required for the random variable Xi?

• What does the “concentration” means?

Let first review two classical results in standard probability theory textbook.

Theorem 0.1 (Strong law of large numbers (LLN)). LetX1, . . . , Xn be a sequence of i.i.d. random variables
with expectation µ. Then,

1

n

n∑
i=1

Xi → µ almost surely.

LLN shows that as long as the expectation µ is finite, the empirical mean will converge to µ. In other
words, as long as we have sufficient samples, 1

n

∑n
i=1Xi will always concentrate at µ. Unfortunately, the

rate of “concentration” in LLN can be arbitrarily slow. The next theorem, the central limit theorem, makes
one step further shows that if the second moment is finite, the deviation should be on the order of O(1/

√
n).

Theorem 0.2 (Central limit theorem (CLT)). Let X1, . . . , Xn be a sequence of i.i.d. random variables with
mean µ and variance σ2. Then,

√
n

(
X1 +X2 + · · ·+Xn

n
− µ

)
→ N (0, σ2) in distribution.

CLT implies that 1
n

∑n
i=1Xi ≈ µ + σ√

n
Z, where Z is the standard normal random variable. Thus,

it provides a precise characterization how the empirical mean deviates from the population mean µ when
the deviation is in the order of 1/

√
n. CLT is strong in the sense that it provide a precise (bu asymptotic)

characterization of the whole distribution of (small) deviations However, it is also not sufficient if we are
interested in “large deviations”, whose magnitudes do not depend on n?

1 Linear Concentration

By Chebyshev’s inequality,

P

{∣∣ 1
n

n∑
i=1

Xi − µ
∣∣ ≥ t

}
= P

{∣∣ 1
n

n∑
i=1

Xi − µ
∣∣2 ≥ t2

}
≤

E[| 1n
∑n

i=1Xi − µ|2]
t2

≤ σ2

nt2
.

1



This probability of having large deviations is in the order of O(1/n).
On the other hand, from CLT, we “anticipate” that

P

{
| 1
n

n∑
i=1

Xi − µ| ≥ t

}
≈ P

{
|σZ√
n
| ≥ t

}
= 2P

{
Z ≥

√
nt

σ

}

=

√
2

π

∫ ∞
√

nt
σ

e−
x2

2 dx ≲ e−
1
2
(
√
nt
σ

)2 = e−
nt2

2σ2 . (1)

This suggests that the tail can decay exponentially fast, which is much stronger than the one provided by
Chebyshev’s inequality. Unfortunately, this calculation is not correct since 1√

n

∑n
i=1Xi − µ → σZ can be

arbitrarily slow. Therefore, we need to control somethings stronger than the second-order moments.
Let us first look at a simple example.

Theorem 1.1 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. symmetric Bernoulli random variable, i.e.,
P(X = 1) = P(X = −1) = 1

2 . Then,

P

{
1

n

n∑
i=1

Xi ≥ t

}
≲ e−

nt2

2 .

Proof. We have

P

{
1

n

n∑
i=1

Xi ≥ t

}
= P

{
eλ

∑n
i=1 ≥ enλt

}
≤ E[eλ

∑n
i=1Xi ]

enλt

= e−nλt
n∏
i=1

E[eλXi ] = e−nλt+nψ(λ), (2)

where

ψ(λ) = logE[eλX ] = log(
eλ + e−λ

2
) ≤ λ2/2. (3)

Plugging it into (2), we have

P

{
1

n

n∑
i=1

Xi ≥ t

}
≤ inf

λ>0
e−nλt+nψ(λ) = inf

λ
e−n(λt−λ

2/2) = e−nt
2/2.

Remark 1.2. The above approach is often referred as the Chernoff-Cramer method.

From the proof, we can see that the key ingredient is the log-moment generating function (log-MGF):

ψ(λ) = logE[eλ(X−E[X])] (4)

and the Legendre conjugate of the log-MGF:

ψ∗(t) = sup
λ>0

{λt− ψ(λ)}. (5)
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Lemma 1.3. If X has a log-MGF ψ with the Legendre dual ψ∗, then

P{X − E[X] ≥ t} ≤ e−ψ
∗(t).

Let X1, . . . , Xn be i.i.d. random variable. Then,

P

{∣∣ 1
n

n∑
i=1

Xi − E[X]
∣∣ ≥ t

}
≤ 2e−nψ

∗(t).

The above lemma implies that ψ∗(t) controls the rate of concentration.

Definition 1.4 (sub-Gaussian). A random variable X is said to be sub-Gaussian with variance proxy σ2 if
ψ(λ) ≤ λ2σ2

2 .

The sub-Gaussian assumption implies that

ψ∗(t) = sup
λ>0

{λt− ψ(λ)} ≥ sup
λ>0

{λt− λ2σ2

2
} =

t2

2σ2
.

By Lemma 1.3, the tail of X satisfies

P{|X − E[X]| ≥ t} ≤ 2e−
t2

2σ2 , (6)

which is similar to the tail of Gaussian. In fact, the tail estimate (6) is often used as the equivalent definition
of the sub-Gaussian class.

Lemma 1.5. If the tail behavior of X satisfies

P {|X| ≥ t} ≤ 2e−C1t for all t ≥ 0. (7)

Then, φ(λ) ≤ K1λ
2 for some constant K1.

Proof. With loss of generality, we consider only the case of λ ≥ 0. Then, we have

E[eλX ] =
∫ ∞

0
P
{
eλX ≥ t

}
dt

=

∫ ∞

−∞
P
{
eλX ≥ eλs

}
λeλs ds (t = eλs)

= λ

(∫ 0

−∞
P {X ≥ s} eλs ds+

∫ ∞

0
P {X ≥ s} eλs ds

)
≤ λ

(
1

λ
+ 2

∫ ∞

0
e−C1t2+λs ds

)
≤ 1 + C1e

Kλ2

≤ eK1λ2 ,

where C,K,K1 are some absolute positive constants.
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Corollary 1.6 (Chernoff bound). LetX1, . . . , Xn be i.i.d. sub-Gaussian random variables with mean µ and
variance proxy σ2. Then

P{| 1
n

n∑
i=1

Xi − µ| ≥ t} ≤ 2e−
nt2

2σ2 .

By Lemma 6, we can conclude that as long as each random variable has a sub-Gaussian tail, we have
P (| 1n

∑
iXi − µ| ≥ t) ≤ 2e−K1t2 for some constant K1.

Examples:

• Gaussian RV: For g ∼ N (0, 1), its tail behavior satisfies [Vershynin, 2018, Proposition 2.1.2](
1

t
− 1

t3

)
1√
2π
e−t

2/2 ≤ P {g ≥ t} ≤ 1

t
· 1√

2π
e−t

2/2

• Bounded RV: Bounded random variables obviously satisfy the tail behavior (7). Specifically, the
following lemma provides a tight estimate of the variance proxy.

Lemma 1.7 (Hoffding’s lemma). Assume a ≤ X ≤ b. Then, ψ(λ) ≤ λ2(b− a)2/8.

Proof. WLOG, assume that E[X] = 0. Recall that ψ(λ) = logE[eλX ]. Then,

ψ′(λ) =
E[XeλX ]
E[eλX ]

, ψ′′(λ) =
E[X2eλX ]

E[eλX ]
−
(
E[XeλX ]
E[eλX ]

)2

.

Let Q denote the distribution with dQ
dP = eλX/E[eλX ]. Then, we can rewrite the second-order deriva-

tive as VarQ[X]. Since X ∈ [a, b], we have

VarQ[X] = EQ[|X − EX |2] ≤ EQ[|X − b− a

2
|2] ≤ EQ[|

b− a

2
|2] = (b− a)2

4
.

Hence,

ψ(0) = 0, ψ′(0) = 0, ψ′′(λ) ≤ (b− a)2

4
,

which implies

ψ(λ) = ψ(0) +

∫ λ

0

∫ s

0
ψ′′(s) ds ≤ (b− a)2λ2

8
.

Remark 1.8. The Hoeffding’s lemma is sharp when X is the symmetric Bernoulli distribution, i.e.,
P(X = 1) = P(X = −1) = 1/2. See Eq. (3).

Corollary 1.9 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. random variables. If a ≤ Xi ≤ b,
then,

P

{
| 1
n

n∑
i=1

Xi − µ| ≥ t

}
≤ 2e

− 2nt2

(b−a)2 .
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2 Nonlinear Concentration

Let f : Rn 7→ R be a (nonlinear) function and consider the following concentration:

f(X1, . . . , Xn) ≈ E[f(X1, . . . , Xn)] with high probability?

The preceding results correspond to f(x1, . . . , xn) = 1
n

∑n
i=1 xi. Can we extend it to nonlinear functions?

• If f only depends on one coordinate, we can not anticipate any concentration.

• If f is equally robust to small changes for all coordinates, we anticipate that this case will behave like
the empirical mean.

Theorem 2.1 (McDiarmid’s inequality). Define

Dif(x) = sup
α
f(x1, . . . , xi−1, α, xi+1, . . . , xn)− inf

α
f(x1, . . . , xi−1, α, xi+1, . . . , xn).

Assume that Di is bounded for all i and let σ2 := 1
4

∑n
i=1 ∥Dif∥2L∞ . Then,

P{|f(X1, . . . , Xn)− E[f ]| ≥ t} ≤ 2e−
t2

2σ2 .

One can think Dif(x) as a measure of the sensitivity of f to the i-th coordinates. For the case of
empirical mean, Dif(x) = O(1/n) for every i. This recovers the Hoeffding’s inequality (Corollary 1.9).
Thus, we can viewed McDiarmid’s inequality as a nonlinear version of Hoeffding’s inequality. Question: Is
there a similar nonlinear Chernoff’s inequality?

The proof needs following lemmas.

Lemma 2.2 (Azuma’s lemma). Let {Fi}ni=1 be a filtration. Assume σi to be positive constants and {∆i}
random variables such that

1. E[∆i|Fi−1] = 0 (Martingale difference property).

2. logE[eλ∆i |Fi−1] ≤
λ2σ2

i
2 (Conditional sub-Gaussian property).

Then,
∑n

i=1∆i is sub-Gaussian with the proxy variance
∑n

i=1 σ
2
i .

Proof. This time, we do not have the independence. Instead, we can exploit the conditional independence,
i.e., the martingale property. Consider the condition on the filtration

E
[
eλ

∑n
i=1 ∆i

]
= E

[
E[eλ

∑n
i=1 ∆i |Fn−1]

]
E
[
eλ

∑n−1
i=1 ∆i E[eλ∆n |Fn−1]

]
≤ e

λ2σ2
n

2 E
[
eλ

∑n−1
i=1 ∆i

]
By induction, we conclude that

E[eλ
∑n

i=1 ∆i ] ≤ e
λ2

∑n
i=1 σ2

i
2 .

This means
∑n

i=1∆i is sub-Gaussian with the proxy variance
∑n

i=1 σ
2
i .
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Lemma 2.3 (Azuma-Hoeffding’s inequality). Under the assumption of Lemma 2.2, assume Ai ≤ ∆i ≤ Bi
almost surely and Ai, Bi are Fi−1-measurable. Then,

∑n
i=1∆i is sub-Gaussian with the proxy variance

σ2 = 1
4

∑n
i=1 ∥Bi −Ai∥L∞ . In particular,

P

{
|
n∑
i=1

∆i| ≥ t

}
≤ 2e−

t2

2σ2 .

Proof. Combining Lemma 1.3, 1.7 and 2.2, we complete the proof.

Proof of McDiarmid’s inequality. To analyze the behavior of f(X1, . . . , Xn), consider the following
decomposition

f(X)− E[f(X)] = f(X)− E[f(X)|X1, . . . , Xn−1]

+ E[f(X)|X1, . . . , Xn−1]− E[f(X)|X1, . . . , Xn−2]

+ · · ·+ E[f(X)|X1]− E[f(X)]

=

n∑
i=1

∆i, (8)

where ∆i = E[f(X)|X1, . . . , Xi]−E[f(X)|X1, . . . , Xi−1]. Let Fi = σ(X1, . . . , Xi). Then, E[∆i|Fi−1] =
0 and

∆i = E
[
E[f(X1, . . . , Xi, . . . , Xn)|Xi]− f(X)|X1, . . . , Xi−1

]
.

Let

Ai = E[inf
α
f(X1, . . . , Xi−1, α,Xi+1, . . . , Xn)− f(X1, . . . , Xn)|X1, . . . , Xi−1]

Bi = E[sup
α
f(X1, . . . , Xi−1, α,Xi+1, . . . , Xn)− f(X1, . . . , Xn)|X1, . . . , Xi−1]

By the assumption of f , it is easy to verify that

Ai ≤ ∆i ≤ Bi, |Bi −Ai| ≤ ∥Dif∥L∞ .

Using the Azuma-Hoeffding lemma, f(X) − E[f(X) is a sub-Gaussian with the variance proxy σ2 =
1
4

∑n
i=1 ∥Dif∥2L∞ . This directly implies that

P{|f(X)− E[f(X)]| ≥ t} ≤ 2e
− 2∑n

i=1
∥Dif∥2L∞ .

Thus, we complete the proof.

3 Maximal Inequality

Lemma 3.1 (Maximal inequality). Assume that X1, . . . , Xn be n sub-Gaussian random variables with the
variance proxy σ2. Then,

E[max
i∈[n]

Xi] ≤ σ
√

2 log n.
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Proof. Recall the LogSumExp trick we introduced in Lecture 3:

max
i∈[n]

Xi ≤
1

λ
log

n∑
i=1

eλXi .

For any λ > 0,

E[max
i∈[n]

Xi] ≤
1

λ
E[log

n∑
i=1

eλXi ]

≤ 1

λ
log

n∑
i=1

E[eλXi ] (Jensen’s inequality)

≤ 1

λ
log

n∑
i=1

e
σ2λ2

2 =
log n

λ
+
σ2λ

2
.

Taking λ =
√

2 log(n)/σ2 completes the proof.

Note that in the maximal inequality, we do not assume that X1, . . . , Xn are independent. In fact, the
bound in Lemma 3.1 is sharp.

Lemma 3.2. Let X1, . . . , Xn be independent N (0, 1) random variables. Then,

Emax
i∈[n]

Xi ≥ c
√

log n.
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