
Mathematical Introduction to Machine Learning

Lecture 16: Theoretical Foundations of Two-layer Neural networks
December 21, 2023

Lecturer: Lei Wu Scribe: Lei Wu

The set of functions that can be represented by two-layer neural nets is given by

Fσ,d =
{
aTσ(Wx+ b) : a ∈ Rm, b ∈ Rm,W ∈ Rm×d,m ∈ N

}
.

Next, we study the approximation power of two-layer neural nets.

1 Universal approximation properties

Definition 1.1 (UAP). Let X be a compact set. A function class F is said to be universal approximator if
F is dense in C(X) with respect to the uniform metric. This is equivalent to say that for any f ∈ C(X) and
ε > 0, there exists f ∈ F such that

sup
x∈X

|f(x)− h(x)| ≤ ε.

Theorem 1.2 ([Siegel and Xu, 2020]). Assume σ such that Fσ,1 is dense in C([0, 1]). Then, Fσ,d is dense
in C([0, 1]d).

Proof. First, we assume that σ ∈ C∞(R). Then, for any w ∈ Rd and b ∈ R,

∂

∂wi
σ(wTx+ b) = lim

ϵ→0

σ(wTx+ ϵeTi x+ b)− σ(wTx+ b)

ϵ
∈ Fσ,d

for i = 1, . . . , d. Similarly, for any α = (α1, . . . , αd) ∈ Nd,

∂

∂wα
σ(wTx+ b) = xασ|α|(wTx+ b) ∈ Fσ,d.

Since Fσ,1 is dense in C([0, 1]), σ cannot be a polynomial. Hence, we can choose w = 0 and b ∈ R such
that σk(b) ̸= 0 for any k ∈ N. Therefore, all the polynomials of the form xα1

1 · · ·xαd
d are in F̄σ,d. This

implies that F̄σ,d contains all the polynomials. By Weierstrass-Stone theorem, F̄σ,d is dense in C(Ω).
For non-smooth σ, since Fσ,1 is dense in C([0, 1]), we can use a two-layer neural net to approximate a

smooth one. Then, the same results follow.

• The above proof implies that Fσ,d has UAP if σ is smooth and non-polynomial.

• For non-smooth networks, we only need to consider the one-dimensional case, where explicitly con-
structive proof is often doable. The following lemma concerns the ReLU activation function.

Lemma 1.3. Assume σ(z) = max(0, z). For any Lipschitz continuous function f , there exits a two-layer
neural network fm(·; θ) such that

sup
x∈[0,1]

|fm(x; θ)− f(x)| ≲ Lip(f)

m
.

1

Proof. Let h = 1
m and {xj = jh}mj=0 be the uniform grids in [0, 1]. Let t(x) = max(1 − |x|, 0) be the

triangular function. Then, the piecewise linear interpolator can be written as

f̃m(x) =
m∑
j=0

f(xi)t

(
x− xi

h

)
. (1)

Consider the approximation error in the interval [xj , xj + h]: for t ∈ [0, h],

|f(xj + t)− f̃(xj + t)| = |f(xj + t)− f(xj)−
f(xj + h)− f(xj)

h
t|

= |f ′(ξ1)t− f ′(ξ2)t| ≲ Lip(f)h.

Hence,
sup

x∈[0,1]
|f̃m(x)− f(x)| = max

j∈[m−1]
sup

t∈[0,h]
|f(xj + t)− f̃(xj + t)| ≲ Lip(f)h.

Notice that the triangular function can exactly represented with 3 ReLU neurons:

t(x) = σ(x+ 1) + σ(x− 1)− 2σ(x).

Plugging it into (1), it shows that f̃m can be represented with a two-layer neural net with 3m neurons.

Since the Lipschitz class is dense in C([0, 1]), we thus prove the UAP for the ReLU activation function.
For other activation functions, one can use other constructive proofs.

We remark that the seminal work [Cybenko, 1989] proved UAP only for networks activated by sigmoidal
functions 1. The function σ : R 7→ R is said to be sigmoidal if

lim
z→−∞

σ(z) = 0, lim
z→∞

σ(z) = 1. (2)

A fast proof of [Cybenko, 1989] in our framework. Denote by H the Heaviside step function, which
is a special sigmoidal function. Similar to the proof of Lemma 1.3, one can show that the two-layer neural
network activated by H can mimic any piecewise constant function. Hence, FH,1 has UAP. Noticing that
σ(βz) → H(z) as β → ∞ if σ is sigmoidal, we have Fσ,1 has also UAP. Applying Theorem 1.2 leads to
that Fσ,d has UAP for any d ≥ 1.

2 Approximation with rates

UAP does not provide any quantitative information about the approximation process. In particular, it cannot
explain the superiority of neural nets over the classical methods, such as polynomials, spline, finite element
methods, since all these methods also have UAP.

We first review some classical results of approximation rates.

• Approximating functions in C(X) does not have rate. Why?

• Lemma 1.3 can be extended to d > 1, where the rate is O(1
m1/d). This means that to reach the accuracy

ε, the number of parameters needed is ε−d, which depends on the input dimension exponentially. For
instance, taking ε = 0.1, d = 20, the number of parameters needed is 1020. The issue is referred to as
the curse of dimensionality (CoD).

1The proof in [Cybenko, 1989] is quite elegant by utilizing the Hahn-Banach separation theorem.

2

• High-order smoothness. To obtain a faster approximation rate, we need to consider a smaller target
function space. The classical approach in applied math is to impose stronger smoothness by assuming
the high-order differentiability. For example, consider the Sobolev space defined by the Sobolev
norm:

∥f∥Hs
d
=

∑
|α|≤s

|Dαf |2 dx

1/2

< ∞.

For Hs
d , it has been shown that the minimax rate of approximating this space is O(m−s/d) regardless

what model is utilized. This rate suffers from the CoD unless s ≳ d.

The above approximation rates obtained by assuming certain (classical) smoothness on target functions
all suffer from the CoD. They are quantitative but not useful in high dimensions. The successs of ML in
solving high-dimensional functions implies that ML models must be able to overcome CoD for certain class
of functions. Therefore, the most fundamental problem in ML is to understand:

What kind of functions can be approximated/learned by a particular ML model without CoD.

We already proved that functions in RKHS can be learned without CoD. The question in this lecture is
what kind of functions can be learned efficiently by two-layer neural networks?

Avoid CoD via Monte-Carlo approximation. The Monte-Carlo method for high-dimensional integration
is only example in applied math that we can avoid CoD (do we have other examples?). Hence, we anticipate
similar cases also happen to the approximating high-dimensional functions.

Consider the taking limit for the scaled two-layer neural networks:

fm(x; θ) =
1

m

m∑
j=1

ajφ(x; vj) → E(a,v)∼ρ[aφ(x; v)] = fρ(x), (3)

where φ(x; v) = σ(wTx+ b) but can also take general feature functions. In this way, the two-layer network
fm(·; θ) is a Monte-Carlo approximation of fρ with the approximation error satisfying

fm(x; θ)− fρ(x) ∼
Var(a,v)∼ρ[a

2φ(x, v)2]
√
m

This suggests that if a function f has the probabilistic representation f(x) = E(a,v)∼ρ[aφ(x; v)], then
it can be approximated by Monte-Carlo discretization and the resulting model is exactly a two-layer neural
network. What remains is to identify what kind of functions admit this probabilistic representation.

2.1 The Jones’ trick: probabilistic representation via Fourier transform

The following procedure was first developed in [Jones, 1992]. Let f̂ be the Fourier transform of f :

f̂(ω) =
1

(2π)d

∫
Rd

f(x)e−iωT x dx.

The Fourier inversion theorem says

f(x) =

∫
f̂(ω)eiωx dω. (4)

3

This gives a integral representation of f and we will impose some conditions such that it can be converted
into a probabilistic representation.

Let f̂(ω) = |f̂(ω)|eib(ω) be the polar decomposition of f̂(ω). Then, we can rewrite (4) as follows

f(x) =

∫
|f̂(ω)|ei(b(ω)+ωT x) dω =

∫
|f̂(ω)| cos(b(ω) + ωTx) dω. (5)

Assume γ0(f) =
∫
|f̂(ω)|dω and let dπ(ω) = |f̂(ω)|

γ0(f)
dω. Then,

f(x) = γ0(f)Eω∼π[cos(ω
Tx+ b(ω))]. (6)

Thus, we represent the function as an expectation. Recall that the property of Monte-Carlo integration:

Ex∼ρ[h(x)]−
1

m

m∑
j=1

h(xj) ∼
Var(h)

m
,

where x1, . . . , xm are i.i.d. sampled from ρ. The following theorem shows that the similar result also hold
for function approximation.

Theorem 2.1. Let ρ be any probability distribution over Rd. Assume γ0(f) =
∫
|f̂(ω)|dω < ∞, then there

exists a two-layer neural net fm(·; θ) activated by the cosine function such that

∥fm(·; θ)− f∥2L2(Px)
≲

γ0(f)
2

m
.

Proof. Let W = (ω1, . . . , ωm) with {ωj} being i.i.d. random variable sampled from π. Let

fm(x; θ̃) =
1

m

m∑
j=1

γ0(f) cos(w
T
j x+ b(wj)) =:

1

m

m∑
j=1

Zj .

Moreover,
EW [Zj − f(x)] = 0

EW [(Zj − f(x))2] ≤ EW Z2
j ≤ γ0(f)

2.
(7)

Then, using the independence of Zj , we have

EW [∥fm(·; θ̃)− f∥2L2(Px)
] = Ex EW | 1

m

m∑
j=1

(Zj − f(x))|2

= Ex
1

m2

m∑
j=1

E |Zj − f(x)|2 ≤ γ0(f)
2

m
,

where the last inequality follows from (7).

The preceding rate is a standard Monte-Carlo rate, which is independent of d. This explains the su-
periority of neural networks for approximating functions with Cf < ∞. Note that Cf may depend on d,
althoutgh the rate is not.

Unfortunately, there are still two issues.

• The cosine activation function is not often used in practice, though it is recently found effective in
solving some scientific computing problems [Sitzmann et al., 2020].

• The input domain is Rd. In practice, it is more often to consider a compact domain, e.g., the image
where the pixel value lies in [0, 1].

4

2.2 The Barron’s trick

Andrew R. Barron developed some tricks in [Barron, 1993] to resolve these issues. Let Ω be a compact
domain and define the dual norm

∥w∥Ω = sup
x∈Ω

|wTx|. (8)

Let ŵ = w/∥w∥Ω. A particular example is that Ω is the ℓp ball, for which ∥ · ∥Ω corresponds to the ℓq norm
with q be the Holder conjugate of p, i.e., 1/p + 1/q = 1. In the following, the dependence of Ω will be
omitted for simplicity, but we will frequently use the property that |ŵTx| ≤ 1, ∀x ∈ Ω.

Consider f ∈ C(Ω) and let fe be a L1(R) extension of f . Since, f(0) =
∫
f̂e(ω) dω, we can express f

as follows

f(x)− f(0) =

∫
(eiω

T x − 1)f̂e(ω) dω

=

∫
eiω

T x − 1

∥ω∥
∥ω∥f̂e(ω) dω

=

∫
cos(ωTx+ b(ω))− cos(b(ω))

∥ω∥
∥ω∥|f̂e(ω)|dω

=

∫
g(ω, x)∥ω∥|f̂e(ω)|dω, (9)

where

g(x,w) =
cos(ωTx+ b(ω))− cos(b(ω))

∥ω∥
.

Assume that
γ̃1(f) :=

∫
∥ω∥|f̂(ω)| dω < ∞.

Then,
f(x)− f(0) = γ̃1(f)Eω∼π[g(x, ω)] = γ1(f)Eω∼π[h(ŵ

Tx, ω)], (10)

where h(t, ω) = (cos(∥ω∥t+ b(ω))− cos(b(ω)))/∥ω∥ is Lipschitz with respect to t.
Thus, we express f as an expectation and for a fixed ω, g(x, ω) only depends on ωTx. In other words,

it is essentially an one-dimensional function. Different from the Jones’ expression, here h(·;ω) is a nicely
behaved function. What remains is to show that h(·, ω) can be further expressed in an expectation form, or
approximated by two-layer neural networks.

Theorem 2.2. Assume
γ1(f) = inf

fe|Ω=f

∫
(1 + ∥ω∥)|f̂e(ω)| < ∞,

where the infimum is taken over all the L1(R) extensions of f . Consider the sigmoidal activation function
(2). Then, there exits a two-layer neural nets such that

∥fm(·; θ)− f∥2L2(ρ) ≲
γ1(f)

2

m
.

Proof. First, write g(x, ω) = h(ω̂Tx;w) with h(·;w) : [−1, 1] 7→ R given by

h(t;w) =
cos(∥w∥t+ b(w))− cos(b(w))

∥w∥
,

5

for which supt∈[−1,1]max{|h(t;w)|, |h′(t;w)|} ≤ 1. Let H(t) = 1(t ≥ 1) be the Heaviside step function.
Then,

h(t;w) = h(−1) +

∫ t

−1
h′(s;w) ds

= h(−1) +

∫ 1

−1
h′(s;w)H(t− s;w) ds,

which means h can be represented by a two-layer neural nets activated by the step function. Plugging it into
(10) yields

f(x) = f(0) + γ̃1(f)Eω∼π[h(−1;ω)] + 2γ̃1(f)Eω∼π Es∼Unif[−1,1][h
′(s;ω)H(ω̂Tx− s)], (11)

where γ̃1(f) =
∫
∥ω∥|f̂e(ω)|dω. Thus, we write f in an expectation form. Using the fact that max{h(−1;ω), h′(s;ω)} ≤

1 and |H(ŵTx− s)| ≤ 1. The approximation error is bounded by

app-err ≲
γ̃1(f)

2 + f2(0)

m
≲

1

m

(
(

∫
|f̂e(ω)|dω)2 + (

∫
∥ω∥|f̂e(ω)| dω)2

)
≲

1

m

(∫
(1 + ∥ω∥)|f̂e(ω)| dω

)2

=
γ21(f)

m
.

Taking over all the L1(R) extension fe, we complete the proof for the Heaviside activation function.
For general sigmoidal activation functions, the result follows from the fact that σ(βz) 7→ H(z) as

β → ∞. Moreover, noticing that the above derivation holds for any extension fe. Hence, it must hold for
the one with the smallest moment.

2.3 An alternative Fourier analysis

2.4 Step functions

Lemma 2.3. Suppose h ∈ C2([−1, 1]). Then, we have

h(t) = h(0) +

∫ 1

0
h′(s)H(t− s) ds+

∫ −1

0
h′(s)H(−t+ s) ds.

Proof. When t ≥ 0, we have

h(t) = h(0) +

∫ t

0
h′(s) ds = h(0) +

∫ 1

0
h′(s)H(t− s) ds.

If t < 0, the proof is similar.

Applying this lemma to eict, we discover

eict = 0 + ic

∫ 1

0
eisH(t− s) ds+ ic

∫ −1

0
eisH(s− t) ds. (12)

Using this identity, we have

f(x) =

∫
eiω

T xf̂e(ω) dω =

∫
ei∥ω∥ω̂

T xf̂e(ω) dω

6

=

∫
f̂e(ω) dω +

∫ (
i∥ω∥

∫ 1

0
ei∥ω∥sH(ω̂Tx− s) ds

)
f̂e(ω) dω + I2,

where I2 accounts for the negative part. Hence,

f(x)− f(0) = i

∫
Rd

∫ 1

0
ei∥ω∥sH(ωTx− s) dsf̂e(ω) dω + I2

= i

∫
R

∫ 1

0
ei∥ω∥t+b(ω)H(ω̂Tx− t)∥ω∥|f̂e(ω)|dtdω + I2

= −
∫
R

∫ 1

0
sin(∥ω∥t+ b(ω))H(ω̂Tx− t)∥ω∥|f̂e(ω)| dt dω︸ ︷︷ ︸

I1

+I2.

Hence, if
∫
∥ω∥|f̂e(ω)| dω < ∞, the I1 as well as f(x) can be written as an expectation form by

applying the Jones’ trick.

2.5 ReLU activations

Lemma 2.4. Suppose h ∈ C2([−1, 1]). Then, we have

h(t) = h(0) + h′(0)t+

∫ 1

0
h′′(s)σ(t− s) ds+

∫ −1

0
h′′(s)σ(−t+ s) ds

where σ is the ReLU function.

Proof. When t ≥ 0, we have

h(t) = h(0) +

∫ t

0
h′(τ) dτ

= h(0) +

∫ t

0

(
h′(0) +

∫ s

0
h′′(s) ds

)
dτ

= h(0) + h′(0)t+

∫ t

0

∫ s

0
h′′(s) dsdτ

= h(0) + h′(0)t+

∫ t

0

∫ t

s
h′′(s) ds dτ

= h(0) + h′(0)t+

∫ t

0
h′′(s)(t− s) ds

= h(0) + h′(0)t+

∫ 1

0
h′′(s)(t− s)H(t− s) ds

= h(0) + h′(0)t+

∫ 1

0
h′′(s)σ(t− s) ds.

If t < 0, the proof is similar.

7

Theorem 2.5. Suppose γ2(f) = inffe|Ω=f

∫
(1 + ∥ω∥)2|f̂e(ω)|dω < ∞. Then, there exists a two-layer

ReLU network fm(x; θ) such that

Ex[|
m∑
j=1

aj ReLU(w
T
j x+ bj)− f(x)|2] ≲ γ2(f)

2

m
.

Moreover, for any j ∈ [m], we have

|aj | ≲
γ2(f)

m
, ∥wj∥Ω ≤ 1, |bj | ≤ 1. (13)

Proof. Applying the above lemma to eict, we discover the following identity

eict − ict− 1 = −c2
∫ 1

0
eicsσ(t− s) ds− c2

∫ −1

0
eicsσ(−t+ s) ds. (14)

Then,

f(x)−∇f(0)Tx− f(0) =

∫
Rd

(eiω
T x − iωTx− 1)f̂e(ω) dω

= −
∫
Rd

∫ 1

0
∥ω∥2σ(ω̂Tx− s)ei∥ω∥s dsf̂e(ω) dω + I2

= −
∫
Rd

∫ 1

0
cos(∥ω∥t+ b(ω))σ(ω̂Tx− t)∥ω∥2|f̂(ω)|dt dω︸ ︷︷ ︸

I1

+I2, (15)

where the I2 is similar to I1, accounting for the case ωTx ≤ 0. The explicit form of I2 is omitted for notation
simplicity. Hence, if

∫
∥ω∥2|f̂(ω)| dω < ∞, by using the Jones’ trick, we can write (15) in an expectation

form.
In addition, the linear part can be expressed with two ReLU neurons: ∇f(0)Tx = ReLU(wTx) −

ReLU(−wTx) with w = ∇f(0).

3 Generalization analysis

In this section, we assume Ω = Sd−1 for simplicity. In Lecture 12, we derive the Rademacher complexity
of neural networks of the following class:fm(x; θ) :

m∑
j=1

|aj | ≤ A, ∥wj∥2 + |bj | ≤ B

 ,

where the inner-layer and outer-layer weights are controlled independently. However, for ReLU networks,
we only need to control the path norm

∥θ∥P :=
m∑
j=1

|aj |(∥wj∥2 + |bj |) (16)

8

because of the positive homogeneity of ReLU. Specifically, we have

FQ = {fm(x; θ) : ∥θ∥P ≤ Q}

=

fm(·; θ) :
m∑
j=1

|aj | ≤ Q, ∥wj∥+ |bj | = 1 for j = 1, 2, . . . ,m

 . (17)

Proposition 3.1. R̂adn(FQ) ≲ Q/
√
n

Proof. Follow exactly the proof of Lemma 4.9 in Lecture 12.

The regularized estimator. Let the empirical risk

R̂n(θ) =
1

2

n∑
i=1

(fm(xi; θ)− f∗(xi))
2.

Consider the path norm-regularized estimator:

θ̂n = argmin
θ

R̂n(θ) +
λ√
n
∥θ∥P . (18)

For technical simplicity, assume supx∈X |f∗(x)| ≤ 1 and use the truncated network:

f̃m(x; θ) = min(max(fm(x; θ),−1), 1).

Theorem 3.2. Assume λ ≥ C, where C is an absolute constant. For any δ ∈ (0, 1), with probability 1− δ
over the choice of training samples, we have

R(θ̂n) ≲
γ22(f

∗)

m
+

γ2(f
∗)√
n

+

√
log(1/δ)

n
.

• The three terms of the RHS denote the approximation error, estimation error, and error caused by the
exception set, respectively.

• The estimate does not suffer from the curse of dimensionality (CoD), and works well in the over-
parameterized regime, i.e., m > n.

Proof. Let Q = γ2(f
∗).

(1) By Theorem 2.5, there exits θ̃ such that

R̂n(θ̃) ≤
3Q2

m
, ∥θ̃∥P ≤ 2Q.

By definition,
R̂n(θ̂n) +

λ√
n
∥θ̂n∥P ≤ R̂n(θ̃) +

λ√
n
∥θ̃∥P ≤ 3Q2

m
+ 2

λ√
n
Q.

Hence,

∥θ̂n∥P ≤ 2Q+
3Q2√n

λm
=: C(m,λ,Q)

R̂n(θ̂n) ≤
3Q2

m
+

2λ√
n
Q. (19)

9

(2) Let HC = {(f̃m(x; θ) − f∗(x))2 : ∥θ∥P ≤ C}. Since t2 is 2-Lipschitz continuous for t ∈ [−1, 1].
By the contraction lemma,

R̂adn(HC) ≤ 2R̂adn(FC). (20)

By (19), f̂m(·; θ̂n) ∈ FC(m,λ,Q).

(3) Using the Rademacher complexity-based generalization bound, we have

R(θ̂n) ≤ R̂(θ̂n) + 2R̂adn(HC(m,λ,Q)) +

√
log(2/δ)

n

≤ R̂(θ̂n) + 4R̂adn(FC(m,λ,Q)) +

√
log(2/δ)

n
(Use Eq.(20))

≲ R̂(θ̂n) +
C(m,λ,Q)√

n
+

√
log(2/δ)

n
(Use Prop.3.1 and Eq.(19))

≤ 3Q2

m
+

2λ√
n
Q+

1√
n

(
2Q+

3Q2√n

λm

)
+

√
log(2/δ)

n
(Use Eq.(19))

≲
Q2

m
+

Q√
n
+

√
log(2/δ)

n
.

References

[Barron, 1993] Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information theory, 39(3):930–945.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303–314.

[Jones, 1992] Jones, L. K. (1992). A simple lemma on greedy approximation in hilbert space and conver-
gence rates for projection pursuit regression and neural network training. The annals of Statistics, pages
608–613.

[Siegel and Xu, 2020] Siegel, J. W. and Xu, J. (2020). Approximation rates for neural networks with general
activation functions. Neural Networks, 128:313–321.

[Sitzmann et al., 2020] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetzstein, G. (2020). Im-
plicit neural representations with periodic activation functions. Advances in Neural Information Process-
ing Systems, 33:7462–7473.

10

	Universal approximation properties
	Approximation with rates
	The Jones' trick: probabilistic representation via Fourier transform
	The Barron's trick
	An alternative Fourier analysis
	Step functions
	ReLU activations

	Generalization analysis

