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Note that when deriving the kernel version of SVM, the convention way is using the Lagrange duality
and KKT condition. However, in this note, we instead apply the representer theorem to derive it and thus
we avoid the introduction of Lagrange duality and KKT condition. By this derivation, the only minor issue
is that it is unclear why the support vectors correspond to the points with the smallest margins. This issue,
however, can be resolved easily by using the definition of minima (which is left to homework). If you would
like to know more about Lagrange duality, we refer to Section 15 of tripleS’s book.

1 Problem setup

• In classification problem, we are given n samples (x1, y1), . . . , (xn, yn) with yi ∈ {1, 2, . . . , C}. C
is the number of classes. Different from regression, the labels are discrete.

• Our ultimate goal is to learn a classifier f : Rd 7→ {1, . . . , C} to minimize the population classiciation
error

R(f) = Ex,y[ℓ0−1(f(x), y)],

where

ℓ0−1(y, y
′) =

{
0 if y = y′

1 otherwise.

• In practice, we can only deal with the empirical error

R̂(f) =
1

n

n∑
i=1

ℓ0−1(f(xi), yi) + λΩ(f), (1)

where the regularization function Ω : F 7→ R+ implements a way of penalizing the model complexity
and F is the hypothesis class.

• There is a serious issue with the optimization problem (1): the loss function ℓ0−1 is not continuous.
Consequently, it is unlikely to directly optimize (1).

The core problem in classification is to design an appropriate “surrogate loss” to replace ℓ0−1.

Here the “appropriate” means: 1) the corresponding optimization problem is easy to solve; 2) The
minimization of surrogate loss can lead to small ℓ0−1 loss.

Unfortunately, there is no unifying approach to designing surrogate loss. In this lecture, we introduce
the two most popular ones:

• probabilistic modeling: the softmax classifier,

• geometric modeling: the max-margin classifier.
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2 The probabilistic modeling and softmax classifier

In many cases, we can model the label as a discrete probability distribution over the C classes. This typically
happens when the data of different classes are not well separated. See the left panel of Figure 1 for an
illustration. In such a case, probabilistic modelling of labels are better for data points that are close to the
boundary of two classes. This situation also occur frequently in practice. See the right panel of Figure 1,
which shows an image which contains both ‘dog’ and ‘car’ two classes, for which modeling the label as a
probability distribution is obviously a better choice.

Figure 1: Left: An illustration of how two classes are not well separated. Right: An image of containing both dog
and car, whose label should be modeled as a probability distribution over classes.

In probabilistic modeling of classification, the “true label” of x is a discrete prob. distribution:

y = p(x) = (p1(x), p2(x), . . . , pC(x)),

where for any j ∈ [C] pj(x) ≥ 0 and
∑

j pj(x) = 1. Denote by

PC = {p ∈ RC :
∑
j

pj = 1,min
j

pj ≥ 0}

the set of discrete probability distributions over C classes.
However, in practice, the “observed label” y ∈ {1, 2, . . . , C} is a sample drawn from the multi-

nomial distribution parameterized by p(x). An important related concept is the “one-hot label”: ey =
(0, . . . , 0, 1, 0, . . . , 0) ∈ PC where the nonzero coordinate is the y-th one. This can be viewed as a discrete
“delta” probability distribution, which is a good inference of the true label p(x) from just one sample.

Any C-dimensional vector can be converted to a discrete probability distribution by using the softmax
operator: RC 7→ PC ,

softmax(z) =

(
ez1/T∑
j e

zj/T
,

ez2/T∑
j e

zj/T
, . . . ,

ezC/T∑
j e

zj/T

)
,

where T > 0 isa hyper-parameter, commonly referred to as the “temperature”, that controls the "softness"
of the softmax function. Given any parametrized model fθ : Rd 7→ RC , we can form a classifier by

F (x; θ) = softmax(fθ(x)) : Rd 7→ PC .
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Learning a classifier can formulated as following problem

min
θ

1

n

n∑
i=1

d(F (xi; θ), eyi) + λΩ(θ), (2)

where eyi ∈ Pc is the one-hot label. What remains is to choose an appropriate “distance” function ℓ :
PC × PC 7→ R≥0 to measure the diffence between two probability distributions. There are a lot choices:

• ∥p− q∥1 =
∑

j |pj − qj |. This ℓ1 distance corresponds to the TV norm.

• ∥p− q∥2 =
√∑

j |pj − qj |2. This is the standard ℓ2 norm.

However, the aforementioned choices do not take advantage of the unique structure of the output space,
which is probabilistic in nature. The most commonly employed metric in practice is the Kullback-Leibler
(KL) divergence

DKL(p||q) =
∑
j

pj log(pj/qj).

2.1 The KL divergence

The KL divergence, also known as relative entropy, is very popular in measuring the difference between two
probability distributions. It is widely used in many problems such as the convergence analysis of MCMC
sampler/Fokker-Plank equation.

For two probability distributions P,Q,

DKL(P ||Q) =

∫
log(

dP

dQ
) dP,

where dP
dQ is the Radon-Nikodynm derivative of P with respect to Q.

• When P,Q are discrete, DKL(P ||Q) =
∑

j pj log(pj/qj).

• If P,Q have density function p, q, respectively, then DKL(P ||Q) =
∫
p(x) log(p(x)/q(x)) dx.

Some basic facts of KL divergence:

• KL divergence is not symmetric, i.e., DKL(P ||Q) ̸= DKL(Q||P );

• For any P,Q, DKL(P ||Q) ≥ 0;

• DKL(P ||Q) = 0 iff P = Q almost surely;

• DKL is jointly convex, i.e.,

DKL(λP1 + (1− λ)P2||λQ1 + (1− λ)Q2) ≤ λDKL(P1||Q1) + (1− λ)DKL(P2||Q2).

• DKL(P ||Q) = −
∑

j pj log qj +
∑

j pj log pj = H(P,Q) − H(P ). Here, H(P,Q) denotes the
cross-entropy between P and Q; H(P ) denotes the entropy of P .
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2.2 Softmax classifier

For simplicity, we first consider one sample (x, y). Here, let y ∈ PC be a general label (which is not
necessarily one-hot).

DKL(y||F (x; θ)) =
∑
j

yj log(
yj

Fj(x; θ)
) = C︸︷︷︸

entropy of y

−
∑
j

yj log(Fj(x; θ))︸ ︷︷ ︸
cross-entropy

, (3)

where C is a constant independent of θ. Then minimizing the KL divergence is equivalent to minimizing
the cross-entropy loss:

min
θ

1

n

n∑
i=1

−
∑
j

yi,j log(Fyi,j (xi; θ))

 , (4)

where yi = (yi,1, . . . , yi,C) corresponds to the label of i-th sample. When the label is one-hot, the objective
can be further simplified to

min
θ

− 1

n

n∑
i=1

log(Fyi(xi; θ)), (5)

where we abuse the notation of yi for simplicity.

Remark 2.1. Can we minimize DKL(F (x; θ)||y)? Yes, we can. But the problem is that the resulting
objective function is much more complicated.

Remark 2.2. In fact, the objective (5) can be easily derived from the maximum likelihood estimation (MLE)
perspective. But the interpretation of minizing the KL divergence is more general and flexible as it precisely
captures the structure of the label space. This viewpoint allows for straightforward customization of the
classifier.

• Can we replace the softmax with other operators that map a vector to a discrete probability, e.g.,

s(z) =

(
|z1|α∑
j |zj |α

, . . . ,
|zC |α∑
j |zj |α

)
?

The answer is affirmative. But it seems that the softmax performs better for many practical problems.
The other choices might be useful in some specific problems.

• Can we replace the KL divergence with other distance functions? Yes!

• Can we encode the prior knowledge of the output probabilities? Yes! Given below is an example.

Entropy regularization. If our classification problem is fraught with considerable uncertainty or the ob-
served labels are noisy, then fitting the one-hot labels would be a bad idea. We anticipate the output prob-
ability distribution to be smoother and exibit higher entropy, rather than behaving like a delta function. To
address this issue, a direct approach is to encourage the entropy of output distribution:

min
θ

1

n

n∑
i=1

DKL(yi||F (xi; θ))− λ entropy(F (xi; θ)),
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Label smoothing. Calculating entropy is often computationally intensive and costly. A more practical
approach is to fit the smoothed labels:

Sε : (0, . . . , 0, 1, 0, . . . , 0) 7→ (ε, . . . , ε, 1− (C − 1)ε, ε, . . . , ε),

where ε should be sufficiently small to ensure that the smoothed label still represents a valid probability
distribution. Utilizing these smoothed labels, which possess higher entropy, enables the development of a
classifier with correspondingly higher entropy.

Figure 2: An illustration of label smoothing.

3 The SVM and max-margin classifier

When the data are well separated, we have that the predictions are very confident and output probability
distributions are always like delta functions. In such a case, the probabilistic modeling of classification
is not necessary since there are no uncertainty in prediction. Support vector machine (SVM) provides a
geometric modeling of classification in such a case, and in particular, the introduced concept “margin” is
very important for understanding classification. Throught this section, we will only consider the binary
classification problem with the label y ∈ {−1, 1} for simplicity.

3.1 Hard-SVM

Suppose that the data are linearly separable and hard-SVM attempt to find a classifier that separates the data
with the largest “margin”. See Figure 3 for an illustration. The basic idea is that we expect the decision
boundary to be away from data points as far as possible. This intuition is formalized by using the concept
of margin.

Figure 3 provides an illustration of hard SVM and as a comparison, a small-margin decision boundary
is also ploted. In particular, the right panel provides a semantic visualization of how different classifiers
perform on test data. One can see that the max-margin classifier performs much better than the small-
margin classifier. The reason is that a classifier often makes mistakes only on data points that are close to
decision boundary. For a max-margin classifier, the data that are close to decision boundary only contribute
a small portion of whole population. In contrast, for a small-margin classifier, there are a large amount of
points that are close to the decision boundary.

Next, we turn to provide a mathematical formulation/modeling of the above intuition/insight. Let
fθ(x) = βTx + β0 with θ = (β, β0) be the decision function. The corresponding decision boundary is
given by the hyperplane:

Hθ = {x ∈ Rd : βTx+ β0 = 0}.
Geometrically, the margin of sample x is defined as the distance between x to the decision boundary Hθ:

γ(x; θ) = dist(x,Hθ) =
|βTx+ β0|

∥β∥
. (6)
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Figure 3: An illustration of hard-SVM on the training data (left) and test data (right). In particular, the right panel
shows how the max-margin classifier performs much better than the small-margin classifier since the former are much
more robust to the deviation between training and testing data.

For each sample, we can compute a margin. Thus, we have n margins:

γ(x1; θ), γ(x2; θ), · · · , γ(xn; θ).

The next question is: what do we mean by maximizing the margin? Should we minimize the average margin
1
n

∑n
i=1 γ(xi; θ) or the worst-case margin: mini γ(xi; θ). Let us recall the intuition illustrated in Figure 3.

We would like the most points to be away from the decision bounday and such intuition suggest that the
worst-case margin is a better choice. Mathematically, the hard-SVM solves the following maxmin problem:

max
θ

min
i∈[n]

γ(xi; θ) (Hard-SVM) (7)

By ensuring each sample to be classified correctly, i.e., βTxi + β0 and yi should have the same sign.
Then, the problem (Hard-SVM) is equivalent to

max
β∈Sd−1,β0∈R

min
i∈[n]

yi(β
Tx+ β0). (8)

The above is a minimax problem, which is not easy to optimize. It can be converted into a constraint
optimization problem as follows.

Theorem 3.1. The problem (8) is eqivalent to

min
β,β0

∥β∥2

s.t. yi(β
Txi + β0) ≥ 1, ∀i ∈ [n]

(9)

Proof. Let r = mini yi(β
Txi + β0). Then (8) can be solved by

max
β∈Sd−1,β0∈R

r
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s.t. yi(β
Txi + β0) ≥ r, ∀i ∈ [n].

Let β̃ = β/r, β̃0 = β0/r. Then, the problem becomes

min
β̃

∥β̃∥

s.t. yi(β̃
Txi + β̃0) ≥ 1, ∀i ∈ [n].

Remark 3.2. The above procedure is a very useful trick in convex optimization.

The problem (9) can be solved efficiently by using convex optimization methods. Essentially, (9) at-
tempts to look for a minimum-ℓ2-norm solution among all the classifiers that separate data points with all
sample margins no less than 1.

General max-margin classifier Given a function class F that satisfies αf ∈ F for any f ∈ F , α > 0, we
say the data are F-separable if there exist f ∈ F such that

min
i

yif(xi) ≥ 1.

Definition 3.3. Given a classifier f , we define γf (x) = yf(x) as the margin of f at x.

In such a general case, one can intuitively interpret “margin” as the confidence of prediction correctness.
In the linear case, if choosing Ω(·) to be the ℓ2 norm of parameters, then γf (x) is equal to the Euclidean
distance from x to the decision boundary. However, in general, the margin might not have a clear geometric
interpretation.

The max-margin classifier can be defined as the solution of the following problem

min
f∈F

Ω(f)

s.t. yif(xi) ≥ 1, i ∈ [n],
(10)

where Ω(·) is a penalization used to control the complexity of decision function. This recovers the hard-
SVM if f is linear and Ω(·) is the ℓ2 norm.

3.2 Soft-SVM

In the above derivation, we assume that the data are well-separated. The soft-SVM extends this to the non-
separable case. Introduce the slack variable ξi ≥ 0 to denote the margin violation at the i-th sample. Then,
the soft-SVM solves the following optimization problem:

min
f∈F ,ξ∈Rn

λΩ(f) +
1

n

n∑
i=1

ξi

s.t. yif(xi) ≥ 1− ξi,

ξi ≥ 0, ∀i ∈ [n].

(11)

This means we allow the margin of each sample to have a violation ξi, but we minimize the average violation
when selecting classifier.
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Lemma 3.4. The problem (11) is equivalent to

min
f∈F

1

n

n∑
i=1

ℓ(yif(xi)) + λΩ(f),

where ℓ(z) = max(0, 1− z) is the hinge loss.

Proof. Notice that (11) is linear in (ξ1, . . . , ξn). Specifically, fixing f and minimizng the objective with
respect to ξ1, . . . , ξn gives the smallest violations for any fixed f ∈ F :

ξi(f) =

{
0 if yif(xi) ≥ 1

1− yif(xi) if yif(xi) < 1.

Obviously, ξi(f) = max(0, 1− yif(xi)). Plugging it back, we have the problem becomes

min
θ

1

n

n∑
i=1

max(0, 1− yif(xi)) + λΩ(f).

We have the following observations for the hinge loss:

• If the margin is less than 1, a linear penalization is imposed.

• If the margin is greater than 1, no penalization is imposed.

The second point is very important, which allows soft-SVM to recover the hard-SVM when data are
linearly separated (need also to take λ → 0). In addition, it also makes much sense intuitively since one
should not impose any or too much penalization if the predictions are correct and confident.

3.3 A margin-based approach of designing surrogate loss

The fundamental insights behind the soft-SVM are: we should only penalize when the margin (i.e., the
prediction confidence) is relatively small. The hinge loss is only one choice and we can also design other
surrogate losses to achieve similar effects.

• Squared hinge loss: ℓ(z) = max(0, 1− z)2. It imposes quadratic penalization for small and negative
margins, and no penalization if margins are significantly positive.

• Exponential loss: ℓ(z) = e−z . Exponentially-small penalization if the margin is significantly positive;
exponentially-large penalization for negative margins.

• Logistic loss: ℓ(z) = log(1+e−z). This corresponds to the softmax classifier for binary classification.
It has the following tails:

ℓlogistic(z) ≈

{
e−z if z ≫ 1

−z if z ≪ −1,

This means that logistic loss behaves like a mixture of hinge loss and exponential loss: exponentially
small penalization if the margin is significantly large; linear penalization if the margin is relatively
negative.

Figure 4 provides a visual comparision among different loss functions.
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Figure 4: Example of loss functions

4 Representer theorem and the feature space SVM

The idea behind hard-SVM highly relies on linear separation. Another way of extending hard-SVM is to
lift the input to a (higher-dimensional) feature space; then these data could be more linearly separable in the
feature space. We have seen similar ideas in kernel methods. In fact, the popularity of kernel methods is
driven by the development of SVM classifiers. Figure 5 provides an example, showing that data are linearly
separated in feature space but not in the original space.

1(x) = x2
1 x2

2

2(x) = x2
1 + x2

2

Figure 5: An illustration of how nonlinear feature maps can make the data linearly separated in the feature space.
Then we can apply hard-SVM to the feature space.

Let Φ : Rd 7→ H be a feature map and H be the feature space. The associated kernel k(x, x′) =
⟨Φ(x),Φ(x′)⟩H. The model is fβ(x) = ⟨β,Φ(x)⟩H. Consider the soft-SVM in the feature space:

min
β

1

n

n∑
i=1

ℓ(yifβ(xi)) + λ∥β∥2H (12)

Let V = span{Φ(x1), . . . ,Φ(xn)} ⊂ H and consider the orthogonal decomposition

β = β∥ + β⊥,
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where β∥ ∈ V and β⊥ ∈ V ⊥. Since ∥β∥2 ≥ ∥β∥∥2 and fβ(xi) = fβ∥(xi) for any i ∈ [n], we have

min
β

1

n

n∑
i=1

ℓ(yifβ(xi)) + λ∥β∥2H = min
β∈V

1

n

n∑
i=1

ℓ(yifβ(xi)) + λ∥β∥2H

Thus, the infinite-dimensional optimization problem is reduced to a finite-dimensional problem.
Let β =

∑n
j=1 αjΦ(xj). Then, the objective becomes

min
α∈Rn

1

n

n∑
i=1

ℓ(

n∑
j=1

αjyi⟨Φ(xi),Φ(xj)⟩) + λ
∑
i,j

αiαj⟨Φ(xi),Φ(xj)⟩H

=⇒ min
α∈Rn

1

n

n∑
i=1

ℓ(yie
T
i Kα) + λαTKα, (13)

where K = (k(xi, xj)) ∈ Rn×n is the kernel matrix. This problem only needs to access the kernel.
Note that the above derivation works for general loss functions. In particular, the kernel-version SVM

corresponds to the case of choosing the hinge loss. In fact, the above derivation also applies to the original
space, where the kernel is given by k(x, x′) = xTx′.

4.1 What are support vectors?

Let α∗ ∈ Rn be the solution of (13). Then, the decision boundary is determined by

β∗ =
∑
j

α∗
jΦ(xj). (14)

The support vectors correspond to xj’s that are activated, i.e., the set {xj : α∗
j ̸= 0}. The decision boundary

is completely determined by these support vectors. In the theory of SVM, an important quantity , related to
the generalization performance, is the number of support vectors: ns = |{xj : α∗

j ̸= 0}|.
Let us consider the linearly-separable case illustrated in the left panel of Figure 6. In such a case, the

use of hinge loss “recovers” the hard-SVM when λ → 0. Thus the support vectors only correspond to the
points that are closest to the decision boundary (in other words, the points with smallest margins) 1. In such
a case, we have that ns ≪ n and this fewness of support vectors is also important to guarantee the good
generalization of a classifier as explained in Section 3.1.

However, in moderm applications, it is also very often that the data may distribute like the right panel
of Figure 6, where nearly all points are close to the decision boundary. In such a case, looking for a decison
boundary with fewest support vectors might be not necessary. But it is always preferred to look for a decision
boundary such that all data points are away from it as much as possible. This may partially explain why the
hinge loss is not very popular in solving complex problems such as image recognition.

5 Softmax classifier is approximately max-margin

We first need some properties of the softmax operator.
1The rigorous justification of this statement is left to homework.
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Figure 6: Left: A typical situation where the softmax classifier is roughtly max-margin. In such a case,
the number of support vectors are small, i.e., ns ≪ n, and thus, the max-margin classifier generalize well.
Right: A situation where there is not clear margin-gap separation and the number of support vectors are
close to the number of samples. Note that in this case, nearly all data points are close to the decision boudary.

Lemma 5.1. Let k = argmaxj zj . Then, as T → 0, we have(
ez1/T∑
j e

zj/T
,

ez2/T∑
j e

zj/T
, . . . ,

ezC/T∑
j e

zj/T

)
→ (0, . . . , 0, 1, 0 . . . , 0) = ek.

In other words, as the temperature T → 0, the softmax becomes the max operator.

Proof. Omited!

Remark 5.2. Note that the max operator is not continuous and thus replaced with a smoothed max operator
is very useful in many applications. The softmax is the most popular one but there exist other choices; see
https://en.wikipedia.org/wiki/Smooth_maximum.

The following lemma provides a non-asymptotic bound.

Lemma 5.3 (The LogSumExp trick). Let z1, . . . , zn ∈ R. For any T > 0, we have

max
j

zj ≤ T log
n∑

j=1

ezj/T ≤ max
j

zj + T log(n).

The proof is left to homework.

Theorem 5.4. Let ℓ(z) = e−z/T and Ω(·) be a complexity measure. Let θ̂T = minΩ(θ)≤1
1
n

∑n
i=1 ℓ(yifθ(xi)).

Let γ(θ) = mini∈[n] yifθ(xi) be the worst-case margin and

θ̄ = max
Ω(θ)≤1

γ(θ) (15)

be the max-margin solution. Then,

γ(θ̄)− T log n ≤ γ(θ̂T ) ≤ γ(θ̄).

This theorem shows that the margin of softmax classifier is close to the one of max-margin classifier, in
particular when T ≪ 1.
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Proof. Let Q(θ) = −T log
(∑n

i=1 e
−yifθ(xi)/T

)
be the softmax margin. Then,

θ̂T = argmin
θ

T log

(
n∑

i=1

e−yifθ(xi)/T

)
= argmin

θ
(−Q(θ)).

By Lemma 5.3, we have

max
i

(−yifθ(xi)) ≤ −Q(θ) ≤ max
i

(−yifθ(xi)) + T log n,

leading to
γ(θ)− T log n ≤ Q(θ) ≤ γ(θ).

By the deinition of θ̄ and θ̂T , we have γ(θ̂T ) ≤ γ(θ̄) and

γ(θ̄)− T log n ≤ Q(θ̄) ≤ Q(θ̂T ) ≤ γ(θT ).

Thus, we complete the proof.

In the above theorem, we only consider the exponential loss for simplicity. In fact, the same observation
holds for any surrogate loss with an exponential tail if taking T to be sufficiently small. The cross-entropy
loss (i.e., the logisitic loss for binary classification) is a particular example.

We also remark that the closeness implied by the theorem above needs T to be sufficiently small. In
fact, for many situations, the data implicitly introduce a “intrinsic” temperature. Let γi(θ) = yifθ(xi) and
k = argmaxi γi(θ). Then, if γk(θ) ≫ γi(θ) for i ̸= k (this corresponds to the left of Figure 6), we have

max
θ

∑
i

e−γi(θ) = max
θ

e−rk(θ)(1 +
∑
i ̸=k

e−(γk(θ)−γi(θ))) ≈ max
θ

e−γk(θ),

where the approximation is exponentially accurate with respect to the margin gaps {γk(θ)−γi(θ)}i ̸=k. This
implies that minimization of the exponential loss roughy gives rise to the max-margin classifier, as long as
long the margin gaps are sufficiently large.

For the right plot of Figure 6 where the margin gaps are small, the softmax classifier does not behave
like a max-margin classifier unless we take the temperature T to be sufficiently small.
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