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The problem for computing gradients

• Consider a general network defined by the forward propagation:

x0 = x

x` = h(x`−1; θ`) for ` = 1, 2, . . . , L,

f(x; Θ) = xL.

WLOG, assuming we have only one pair of data (x, y), the loss is given by

E(Θ) = l(f(x; Θ), y).

• Task: Computing the gradients {
∂E

∂θ1
,
∂E

∂θ2
, · · · , ∂E

∂θL

}
• Why is this problem not trivial?

3 / 49



The problem for computing gradients

• Consider a general network defined by the forward propagation:

x0 = x

x` = h(x`−1; θ`) for ` = 1, 2, . . . , L,

f(x; Θ) = xL.

WLOG, assuming we have only one pair of data (x, y), the loss is given by

E(Θ) = l(f(x; Θ), y).

• Task: Computing the gradients {
∂E

∂θ1
,
∂E

∂θ2
, · · · , ∂E

∂θL

}

• Why is this problem not trivial?

3 / 49



The problem for computing gradients

• Consider a general network defined by the forward propagation:

x0 = x

x` = h(x`−1; θ`) for ` = 1, 2, . . . , L,

f(x; Θ) = xL.

WLOG, assuming we have only one pair of data (x, y), the loss is given by

E(Θ) = l(f(x; Θ), y).

• Task: Computing the gradients {
∂E

∂θ1
,
∂E

∂θ2
, · · · , ∂E

∂θL

}
• Why is this problem not trivial?

3 / 49



The back-propagation algorithm

• By the chain rule,

∂E

∂θ`
=
∂x`

∂θ`
∂E

∂x`
=
∂h(x`−1; θ`)

∂θ`
∂E

∂x`
.

Let gradient signal δ` := ∂E
∂x` . Then, it can be recursively computed via the chain rule:

δ`−1 =
∂x`

∂x`−1
∂E

∂x`
=
∂h(x`−1; θl)

∂x`−1
δ`

δL =
∂l(y′, y)

∂y′

∣∣∣
y′=xL

.

• Note: Compute the red parts need to access the hidden states {x`}L`=0, which are
computed during the forward propagation.
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A visualization of back-prop algorithm

When h(z; θ`) = A`σ`(z) + b`, we have ∂E
∂b`

= ∂E
∂x` and δ` = ∂E

∂A` satisfies

Forward Propagation

x0 = x

x` = A`σ(x`−1) + b`

Back Propagation

δL = l′(f, y)

δ`−1 = σ′(x`−1)� (A`)T δ`

5 / 49



Computational and memory cost analysis

Backprop algorithm is a smart way to implement the chain rule.

Consider a network of depth L, width m, and the batch size B.

• The computational cost is O(Bm2L).
• Reducing the dependence on B and m is not difficult via parallelization. GPUs are great!!

Nvidia Tesla A100 has 6912 cores! RTX 4090 has 16384 cores!
• Reducing the dependence on L is challenging as the computation is essentially serial when

do forward and backward propagations.

• The memory cost is O(BmL+m2L). The blue part is due to we need to store the
hidden state for computing gradient.
• Big memory is necessary for training large models. A100 has 80G memory while RTX

4090 has only 24G.

For training large models, we can
• Buy A100 and H100 if you are rich.
• Reduce the batch size.
• Try zero-order algorithms?
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Gradient Vanishing and Exploding

• Gradient Vanishing:

δ` = [σ′(x`)� (A`+1)T ][σ′(x`+1)� (A`+2)T ] · · · [σ′(xL−1)� (AL)T δL]

The value is approximately the multiplication of L− l term. If σ′(z`) < 1 or ‖A`‖2 < 1,
then δ` will be exponentially small.

• Roughly, δ` ≈ (σ′(x)‖A‖2)L−`. This implies that deep networks are harder to train
than shallow networks.

• More precisely, it is the not the small/large gradient causes the difficulty of training. It is
due to the disparity of gradient scales among different layers. Hence, it is impossible to
choose an appropriate learning rate for all the layers.

Observation

The vanishing/exploding gradient is the major obstacle in training deep nets.
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Alleviate gradient vanishing: activation function

• Saturating activation: For saturating activation function, when |z| > O(1), we have
σ′(z) ≈ 0. This is extremely bad for deep networks.

• Non-saturating activation: Use ReLU and its variants as the nonlinear activation
function.
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Alleviate gradient vanishing: Initialization

Avoid the gradient vanishing at the initialization.

• Consider the commonly random initialization W `
i,j ∈ N (0, t2w), b`j = 0 (we will discuss why

Gaussian is preferred later) and the standard Gaussian input: x ∼ N (0, Id).

• Denote by x` the output of `-th layer: x`+1 = σ(W `xl + bl). We would like to find
initializations such that

E[|x`i |2] = 1, ` ∈ [L], i ∈ [m`]

where x`i is the output of the i-th neuron of `-th layer.

• Consider ReLU activation and at initialization, we have

E[|x`+1
i |2] = E[σ2(

m∑̀
j=1

W `
i,jx

`
j)]

= Ex`Eξi,j∼N (0,1)[‖x`‖2t2wσ2(

m∑̀
j=1

ξ`i,j x̂
`
j)|x`]

= Ex`Eξ∼N (0,1)[‖x`‖2t2wσ2(ξ)|x`]
= t2wEξ∼N (0,1)[σ

2(ξ)]m`. Assume E[|x`i |2] = 1. (1)
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Initialization

Note that Eξ∼N (0,1)[σ
2(ξ)] = 1√

2π

∫∞
0
z2e−z

2/2 = 1/2. Hence, E[|x`+1
i |2] = 1 leads to

t2w =
2

m`
.

• The initialization W `
i,j ∼ N (0, 2

m`
), bj = 0 is called Kaiming-He initialization, which has

become the default initialization for all the ReLU-like activation functions.

• Similarly, we can get t2w = 1
m` if σ(z) = z. This corresponds to the LeCun initialization.

LeCun initialization works pretty well for the tanh activation function, since tanh ≈ x
when x is close to the origin.

• Similar argument can be used to derive the initialization for other activation functions.

• It is also common to use the uniform initialization: W `
i,j ∼ Unif[−t, t], where the specific

value of t can be derived similarly.
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Numerical illustration

In the following figure, we see that with the right initialization, we can avoid the
vanishing/exploding for both the forward and backward propogation at the initialization.

0 20 40 60 80 100
layer 

10 1

100

E b

101 x

t2
w = 2

m
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101

x

t2
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m

Figure 1: ReLU networks with L = 100,m` = 200, l = 1, . . . , L− 1. Left: The case of t2w = 2/ml

(Kaiming-He initialization); Right: The case of t2w = 1/ml (LeCun initialization).
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Why do we choose the random initialization with a large support?

1 We have an understanding for the size of the initialization.

2 We do not have an understanding for the directions we need.

1 Consider a two-layer neural network

f(x) =

m∑
i=1

ai σ
(
wT

i x+ bi
)
.

If (ai,wi, bi) = (aj ,wj , bj) at initialization, then they will remain the same for all time
under gradient flow optimization.

2 We want ‘diverse’ initializations with many different vectors in many different directions, but
we do not know which directions are important.

3 Popular: random initialization with mean zero and appropriate variance.

3 We can explore other forms of initialization, e.g., the orthogonal initialization:
choosing W ` to be the multiple of an orthogonal matrix (if m`+1 = m`). Whether these
initializations overperform or underperform random Gaussians seems to be problem
dependent and is not fully understood.
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Alleviate the gradient vanishing: Skip connections

• Intuitively speaking, skip connections build
highways for the information propagation, such that
information does not need to go through the
convolutional, fully-connected, and activation layers.

• Mathematically,
• x`+1 = x` + h`(x

`)
• xL = x` +

∑L−1
i=` hi(x

i)

• ∂E
∂x` = ∂E

∂xL

(
1 +

∑L−1
i=`

∂hi(x
i)

∂x`

)
.

If the residual blocks {hi} are small, one can see
that the gradients are almost independent of the
depth. So the gradient is well-controlled.

• History: LSTM → Highway network → ResNet.
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Numerical evidence

The above figure is taken from the original paper by Kaiming He et al.
https://arxiv.org/abs/1512.03385.
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Alleviate the gradient vanishing: Batch normalization

• Batch normalization(BN) is one of most effective method to alleviate the gradient
vanishing issue.

• A batch normalization layer define a map: BNγ,β : {x1, . . . ,xm} → {x̃1, . . . x̃m} through

µB ←
1

m

m∑
i=1

xi

σ2
B ←

1

m

m∑
i=1

(xi − µB)
2

x̂i ←
xi − µB√
σ2
B + ε

x̃i ← γx̂i + β ≡ BNγ,β (xi)

where γ, β are added to preserve the expressivity
of the network.

Figure 2: Left: Convolutional nets with
BN; Right: Convolutional without BN.
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Performance of BN

Figure 3: Validation accuracy of Inception and its batch-normalized variants, vs. the number of
training steps. BN-baseline: same as inception with BN layers added before each nonlinearity. BN-x5:
inception with batch normalization and the learning rate is increased by a factor 5, compared to the
baseline. BN-x30 is similar. This figure is taken from https://arxiv.org/pdf/1502.03167.pdf.
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Black magics: Batch normalization

BN is VERY useful for training very deep nets. But it also causes several strange issues.

• For networks with BN layers, we cannot use too small batch size, e.g. B = 1, where
the σB and µB are far away from the σ and µ, the ones over the whole dataset.)

• How do we compute σB and µB during the inference, where we may only have one
sample?
Use the following ones obtained from the moving average during the training:

σinf ← (1− α)σinf + ασtB (2)

µinf ← (1− α)µinf + αµtB , (3)

where σtB , µ
t
B are the statistics calculated at the t-th step of training.
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Black magics: Batch normalization

• Training and test disparity:
• At the training time, {σB , µB} are computed over the samples at the current batch.
• At the inference/testing time, {σinf, µinf} are fixed, which are approximations of the statistics

of whole dataset obtained by the moving average during the training.

18 / 49



Layer normalization

• Let Z = (z1, . . . ,zN )T ∈ RN×H be our feature map. The first and second dimension are
the bach and feature dimension, respectively.

• A layer normalization (LN) layer define a map LNγ,β : {z1, . . . ,zN} → {z̃1, . . . z̃N}
through

µi =
1

H

H∑
j=1

zi,j , σi =

√√√√ 1

H

H∑
j=1

(zi,j − µi)2 for i = 1, . . . , N, (4)

ẑi ← γ � zi − µi
σi

+ β, (5)

where the learnable rescaling factors γ,β ∈ RH .

• Different from BN, 1) LN normalizes data along the feature dimension; 2) LN does
rescaling in an element-wise manner.

• Question: Is element-wise rescaling necessary?
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A visual comparison between BN and LN

• BN are often used in MLP and CNN. LN are more popular in training RNN and
Transformer.

• LN can be applied even the batch size is 1.

Figure 4: Taken from https://www.kaggle.com/code/halflingwizard/how-does-layer-normalization-work.

20 / 49

https://www.kaggle.com/code/halflingwizard/how-does-layer-normalization-work


Gradient clipping

• Let gt denote the stochastic gradient at step t.

• Replace gt with its clipped version: gt → clipγ(gt), where the clipping operator is defined
as

clipγ(g) = min

(
1,

γ

‖g‖

)
g

• In certain situations, element-wise clipping is more effective:

(
clipγ(g)

)
i

= min

(
1,

γ

|gi|

)
gi.

• Gradient clipping is widely used in training recurrent neural networks (RNNs) and
Transformer models. One potential mechanism behind clipping is to mitigate the impact
of heavy-tailed noise. Recall that in the convergence analysis of SGD, convergence requires

E[|ξt|2] <∞.

What happens if the above condition is not met? Read: Why are adaptive methods
good for attention models?
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Adaptive learning rate optimizers
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Motivation

• Gradients of different layers are at different scales. Recall that the convergence depends
on the condition number.

• Layer-wise learning rates! A great idea but hard to implement.

• Adaptive learning rates:

Automatically tune learning rates according to the size of each coordinate.
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Adagrad

• Consider to minimize minx∈Rp f(x). Let gt be the t-th step (stochastic) gradient.

• SGD updates as follows
xt+1 = xt − ηgt.

• The adaptive gradient (Adagrad) method updates as follows

Gt+1 = Gt + g2t

xt+1 = xt − η
gt√

Gt+1 + ε
,

where ε ∼ 10−7 prevents the division by zero. All multiplication and division should be
understood in an elemenwise way.

• Note that where Gt =
∑t
s=0 g

2
t stores the maginitude of each coordinate.

• Issue: Gt is increasing monotonically. Thus, the effective learning rate is decreasing in
time.
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RMSProp

• RMSProp (Tieleman & Hinton, 2012) iterates as follows

vt+1 = βvt + (1− β)g2t

xt+1 = xt − η
gt√

vt+1 + ε
.

• If β = 0, gt = ∇f(xt) (i.e., the full-batch case), it becomes

xt+1 = xt − η
∇f(xt)√
|∇f(xt)|2 + ε

(rProp method).

It is the sign gradient descent (signGD) if ε = 0.

• RMSProp is originally proposed as a stochastic version of rProp. [Q: Why is it
non-trivial?]
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ADAM 2 Optimizer

1 Compute the (stochastic) gradient gt.

2 Estimate the first-order and second-order moment:

mt+1 = β1mt + (1− β1)gt

vt+1 = β2vt + (1− β2)g2t .

3 Bias correction:
mt+1 =

mt+1

1− βt1
, vt+1 =

vt+1

1− βt2
.

4 Update parameters:

xt+1 = xt − η
mt+1√
vt+1 + ε

.

Again, the square root and division are computed in coordinate-wise manner.

In a summary,

ADAM=RMSProp + momentum

2Adaptive momentum: https://arxiv.org/pdf/1412.6980.pdf
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ADAM: Explanation

1 Common initialization: m0 = 0, v0 = 0. This causes mt and gt to be small for small t. Let
E[g2t ] = g2

E[vt] = (1− β2)

t∑
s=0

βs2E[g2t−s] ≈ g2(1− βt2).

The bias-correction step is used to correct this initialization bias.

2 We can also initialize m0 = g0, v0 = g20 , for which the bias-correction step is not necessary.

3 Default parameters are β1 = 0.9, β2 = 0.999, ε = 10−8. The learning rate should be
tunned experimentally in each problem.

4 There are (very recent) convergence results for ADAM both in the convex and non-convex
case. However, all these theoretical results are not interesting since they cannot explain
why ADAM converges faster than SGD.
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Continuous-time limits of ADAM

Let β1 = 1− ηγ1, β2 = 1− ηγ2. Then, taking η → 0, the limit becomes

ṁt = γ1(∇f(xt)−mt)

v̇t = γ2(|∇f(xt)|2 − vt)

ẋt = − mt√
vt + ε

Taking γ1, γ2 →∞, we obtain the signGD flow:

ẋt = − ∇f(xt)√
|∇f(xt)|2 + ε

.

Caution: Different scalings may lead to different continous-time limits.
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A comparison of different optimizers

Figure 5: Taken from the original Adam paper https://arxiv.org/pdf/1412.6980.pdf.
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A short summary

• All first order optimizers are based on gradient descent.

• Both stochastic and non-stochastic gradient descent can be augmented by momentum
(Nesterov or heavy-ball) to more easily escape flat regions.

• Coordinate-wise adaptive learning rates can be used to improve GD/SGD (with or without
momentum) if the energy landscape is flat in some directions and steep in others.

• Continuous time limits can give insight into the behavior of different optimizers for small
learning rates.

• The most popular optimizers in practice are SGD and (stochastic) ADAM.

• There are many similar algorithms (Adadelta, AMSgrad, Adamax, Nadam, ...) and tricks
for specific cases (e.g. deep learning)
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Regularization
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Over-parameterization in deep learning

• Neural networks often work in the over-parameterized regime, i.e., the number of samples
are much larger than data size.
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Weight decay and squared `2 regularization

• Let θt+1 = θt − ηht be the update of our algorithm. The +weight decay is given by

θt+1 = θt − η(ht + λθt) = (1− λη)θt − ηht.

• When optimizer is SGD, it is equivalent to the squared `2 regularization as

∇
(
R̂(θ) +

λ

2
‖θ‖2

)
= ∇R̂(θ) + λθ.

• For other optimizers like ADAM, they are not equivalent. This issue was first
pointed out in https://openreview.net/pdf?id=rk6qdGgCZ and currently, Adam +
weight decay (AdamW) has become the default optimizers in training large language
models (LLMs), e.g., ChatGPT.

• Why weight decay is so useful in training LLMs is still unclear !!! [A research
topic!!]

You should always try it due to the simplicity.
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Batch normalization

• BN is originally proposed to improve the training.

• In practice, it is found that BN can also improve the generalization significantly.

• Always try it, since it improves both convergence and generalization.

• Why BN has regularization effect is still unclear now.

• Unfortunately, BN is never used in RNNs/LSTMs and Transformers. In these
architectures, instead layer normalization is used.
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Dropout: Basic Definition

Normal Forward-prop

z`i = w`
ix

`−1 + b`i

x`i = σ(z`i )

Dropout Forward-prop

r`−1
i ∼ Bernoulli(p)

x̃`−1 = r`−1 � x`−1 (masked)

z`i = w`
ix

`−1 + b`i

x`i = σ(z`i )

• In each step, the dropping mask is randomly sampled. Hence, the masks are different in
different steps.

• The drop ratio is given by 1− p.
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Dropout: A stochastic approximation explanation

• Dropout defines a stochastic network f(x; ξ, θ), where ξ denotes the dropping mask. Note
that in fact f(x; ξ, θ) = f(x; ξ � θ).

• Denote by π the distribution of the mask ξ. Then the training of Dropout goes as follows,

ξt ∼ π
θt+1 = θt − η∇θR̂(f(·; ξt, θt)), (6)

which is exactly SGD of batch size 1 for minimizing

R̂drop(θ) = Eξ∼π[R̂(f(·; ξ, θ))]. (7)
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The regularization effect of dropout

• Let R̂(f) = 1
n

∑n
i=1(f(xi)− yi)2. Let Fθ(x) = Eξ[f(x; ξ, θ)] be the effective model.

• Then,

R̂drop(θ) =
1

n

n∑
i=1

Eξ(f(xi; ξ, θ)− yi)2

=
1

n

n∑
i=1

(Fθ(xi)− yi)2 +
1

n

n∑
i=1

Eξ(f(xi; ξ, θ)− F (xi; θ))
2

= R̂(Fθ) +Qp(θ),

where the Qp(·) term plays the role of regularization. Moreover,

Qp(θ)→ 0 as p→ 1.

37 / 49



Mean-field approximation

• The model is given by Fθ(x) = Eξ[f(x; ξ, θ)], which means that the effective model is an
average/ensemble of sparse subnetworks.

• At training, stochastic approximation is applied. At testing, we can use Monte-Carlo
approximation:

Fθ(x) ≈ 1

m

m∑
j=1

f(x; ξj , θ).

• MC approximation is reliable but computationaly expensive. A more effecient way is the
mean-field approximation:

Eξ[f(x; ξ, θ)] ≈ f(x;E[ξ], θ]) = f(x; pθ),

where the last step is due to f(x; ξ, θ) = f(x; ξ � θ).
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The error of mean-field approximation

• Let µ = Eξ[ξ]. For general h ∈ C2, we have

Eξ[h(ξ)] = Eξ[h(µ) + h′(µ)(ξ − µ) +O(|ξ − µ|2)] (8)

= h(E[ξ]) +O(Var[ξ]). (9)

• The error of mean-field approximation is constant. But why it is small enough is unclear.
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Dropout performance

• Usually, dropout is only applied to fully connected layer.

• Improvement depends on the problem.

• Training is much slower.

40 / 49



Data argumentation

• Increase the amount of data by adding slightly modified copies.
• Typically, most image transformations do not change the label, such as cropping, rotation,

translation, resize, adding noise, Gaussian blurring.
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Regularization in Modern ML

• Traditional viewpoint: Add explicit regulatizations, e.g., Weight decay, batch/layer
normalization, dropout, data argumentation.

• Modern ML: A specific algorithm (with a specific initialization) only converges to certain
solution, which is called implicit regularization/bias.

• For convex problem, GD with small initialization nearly converges to minimum `2-norm
solution.

• For neural networks, the mechasim of implicit regularization is still puzlled due to the
non-convexity.
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Implicit regularization

Figure 6: Taken from [Chiyuan Zhang, et al, ICLR2017]
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Figure 7: The algorithm is gradient descent (GD). Taken from (Wu, Zhu and E, 2017)
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SGD noise

The following table is taken from https://arxiv.org/pdf/2109.14119.pdf.

• We can conclude that

SGD > GD
SGD ≥ GD + (sophisticated explicit regularization.)

• The SGD noise must impose certain implicit regularization effects. SGD with large LR and
small batch size is always preferred.
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Flat minima hypothesis (FMP)

The famous flat minima hypothesis (Hochreiter and Schmidhuber, 1995; Keskar et al.,
2016):

• SGD converges to flatter minima.

• Flatter minima generalize better.

Figure 8: The landscape for for θ(α) := (1− α)θSGD + αθGD. Taken from (Keskar et al., 2016).
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Some remarks

• For neural network models, SGD can always pick up solutions generalizing quite well.

• Explicit regularizations, such as weight decay, dropout, etc. only marginally improve the
generalization performance, compared to implicit regularizations.

• Explicit regularizations are critically important in some scenarios, such as highly noisy
data, unsupervised learning (GAN), etc.
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Summary

• BackProp algorithm, Gradient vanishing/exploding phenomenon.
• Initialization, skip connections, batch normalization.
• Layer-wise learning rates, Adaptive learning rate methods.

• Explict regularization: Weight decay, batch normalization, dropout, data augmentation.

• Implicit regularization: SGD and SGD noise.
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Reading

• https://www.deeplearningbook.org/contents/regularization.html

• https://www.deeplearningbook.org/contents/optimization.html
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