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Deep learning packages overview

« Caffe » Caffe2 « MXNet (Amazon)

(UC Berkeley) (Facebookk « CNTK (Microsoft)
« Torch » PyTorch  « Keras

(NYU / Facebook) (Facebook) + Chainer
« Theano — — — — = TensorFlow + Paddle(Baidu)

(U Montreal) (Google)
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Packages comparison

Prototying

Ease of Use
Community Support
Efficiency

Ease of Learning

Industry

This table is slightly outdated. Take also a look at https://jax.readthedocs.io/en/latest/
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TensorFlow

About TensorFlow

TensorFlow™ is an open source software library for
high performance numerical computation. Its flexible
architecture allows easy deployment of computation
across a variety of platforms (CPUs, GPUs, TPUs),
and from desktops to clusters of servers to mobile

® Tensor computation with
strong GPU acceleration

Automatic differentiation

Lots of API for building
and edge devices. Originally developed by deep neural networks.

researchers and engineers from the Google Brain o .
team within Google’s Al organization, it comes with

strong support for machine learning and deep
learning and the flexible numerical computation core
is used across many other scientific domains.
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PyTorch

PyTorch (website) is a python-based scientific computing package.

® NumPy-like tensor computations with strong GPU acceleration (A replacement of
NumPy).

® Automatic differentiation.
® Lots of APIs for building and training neural networks.
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https://pytorch.org/

JAX

.

JAX: High-Performance Array Computing

JAXis Autograd and XLA, brought together for high-performance numerical computing.

Familiar API

JAX provides a familiar NumPy-style
API for ease of adoption by
researchers and engineers.

Transformations

JAX includes composable function
transformations for compilation,
batching, automatic differentiation,
and parallelization.

Run Anywhere

The same code executes on multiple
backends, including CPU, GPU, &
TPU
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Core modules

torch A Tensor library like Numpy, with strong GPU acceleration
torch.autograd A dynamical automatic differentiation library that support all
differentiable Tensor operations in torch
torch.nn Neural networks library
torch.optim Optimization package, providing SGD, Adam, L-BFGS, etc.

torch.utils Dataloader
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PyTorch tensor

® PyTorch tensors are very similar to NumPy ndarrays.
® But they have a device attribute: ‘cpu’, ‘cuda’, or ‘cuda:2'.

® They might require gradients for the automatic differentiation.

>>> t = torch.tensor([1,2,3], device='cpu',

e requires_grad=False,dtype=torch.float32)
>>> print(t.dtype)

torch.float32

>>> print(t.device)

cpu

>>> print(t.requires_grad)

False
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PyTorch tensor (Cont’d)

® The APIs of PyTorch tensor are almost the same as NumPy array, although there exist

some differences.

# PyTorch
torch.randn(1000,1000)
torch.randn(1000,1000)

X %y
x * torch.tanh(z)
torch.matmul(x, y)

N
nmumn

print(z.shape)

torch.Size([1000, 1000])

® Refer to https://github.com/wkentaro/pytorch-for-numpy-users for detailed API

comparisons of NumPy and PyTorch.

# NumPy
X = numpy.random.randn(1000,1000)
y = numpy.random.randn(1000,1000)

z
4
z

X %y
X * numpy.tanh(z)
numpy.matmul(x, y)

print(z.shape)

(1000, 1000)
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https://github.com/wkentaro/pytorch-for-numpy-users

GPU acceleration

Let x be a torch tensor.

® y = x.cuda() creates a GPU tensor from a CPU tensor.
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GPU acceleration

Let x be a torch tensor.
® y = x.cuda() creates a GPU tensor from a CPU tensor.
® z = y.cpu() creates a CPU tensor from GPU tensor.
® Let y1,y2 be two GPU tensor. Then, y1+y2 is evaluated on GPU.

® Acceleration: An example of matrix multiplication. In this example, GPU is 50 times
faster than CPU.
# CPU
X = torch.randn(10000, 10000)

Z = torch.matmul(X,X)
CPU execution time: ©.1181325912475586 secs
# GPU GPU execution time: 0.0023763840198516846 secs
X = X.cuda()
Z = torch.matmul(X,X)
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GPU acceleration

Let x be a torch tensor.
® y = x.cuda() creates a GPU tensor from a CPU tensor.
® z = y.cpu() creates a CPU tensor from GPU tensor.
® Let y1,y2 be two GPU tensor. Then, y1+y2 is evaluated on GPU.

® Acceleration: An example of matrix multiplication. In this example, GPU is 50 times
faster than CPU.
# CPU
X = torch.randn(10000, 10000)

Z = torch.matmul(X,X)
CPU execution time: ©.1181325912475586 secs
# GPU GPU execution time: 0.0023763840198516846 secs
X = X.cuda()
Z = torch.matmul(X,X)

When there are several GPUs in your computer, you can use the following code.
® device=torch.device(‘cuda:1’) # use the first gpu

® y = x.to(device)
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Interacting with NumPy

® torch.from numpy and torch.numpy.

® The conversion between numpy array and torch
tensor does not allocate new memory.

X_Nnp = numpy.random.rand(2,2)
X_th = torch.from_numpy(x_np)
Xx_np_new = x_th.numpy()

nn

x_th, fill_(1)
print(x_np,'\n")
print(x_np_new)
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Computational graphs: forward propagation

Before proceeding to the automatic differentiation, we need to understand an important
concept: computational graph.

® A computational graph is a directed acyclic graph (DAG) that stores how the function is
computed.
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Computational graphs: forward propagation

Before proceeding to the automatic differentiation, we need to understand an important
concept: computational graph.

® A computational graph is a directed acyclic graph (DAG) that stores how the function is
computed.

® An example: y = sin(z; + x3) + 3. The computational graph decomposes the
computation into the compositions of a series of simple operations.

@0
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Computational graph: backward propagation

The computation graph is used to calculate the gradient.

® How to compute the gradients of those simple functions have been implemented in
PyTorch.
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Computational graph: backward propagation

The computation graph is used to calculate the gradient.
® How to compute the gradients of those simple functions have been implemented in
PyTorch.
® Then, by the chain rule, we can compute the gradients of a general function through the
back-propogation of the computational graph.
Oy — Oy 923 921 _ 1 y ¢og(z1) x 1. The value of z; is stored during the

* Example: 5= = D2 02, Dar : .
forward propagation, when the computational graph is constructed.

@6
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Autograd

® There are two ways to compute the gradients in PyTorch.

x1 = torch.tensor(2., requires_grad=True)
x2 = torch.tensor(3., requires_grad=True)
x3 = torch.tensor(5., requires_grad=True)

y = torch.sin(x1+x2) + x3

dy_dx = torch.autograd.grad(y,
print(dy_dx)

[x1,x2,x3])

(tensor(0.2837), tensor(0.2837), tensor(1l.))

x1 = torch.tensor(2., requires_grad=True)
x2 = torch.tensor(3., requires_grad=True)
x3 = torch.tensor(5., requires_grad=False)

y = torch.sin(x1+x2) + x3

y.backward()
print(xl.grad, x2.grad, x3.grad)

tensor(@.2837) tensor(@.2837) None
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tensors. When calling backward () function, the chain rule is applied back to all the leaf
tensors with requires_grad=True.

14/29



Autograd

® There are two ways to compute the gradients in PyTorch.
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dy_dx = torch.autograd.grad(y, [x1,x2,x3]) y.backward()

print(dy_dx) print(xl.grad, x2.grad, x3.grad)

(tensor(0.2837), tensor(0.2837), tensor(1l.)) tensor(@.2837) tensor(@.2837) None

® The “backward ()" function is more convenient since you don’t need to specify the
tensors. When calling backward () function, the chain rule is applied back to all the leaf
tensors with requires_grad=True.

® A leaf tensor is a tensor you created directly, not a result of an operation. x1,x2, x3 are
the leaf tensors in the above example.
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Autograd: backward function

® Notice that “backward ()" function accumulate sthe gradients.

x = torch.ones(2, requires_grad=True)
y = x.sum()
y.backward()

z = X.pow(2).sum()
z.backward()

# the gradient is dy/dx + dz/dx
print(x.grad)

tensor([3., 3.]1)
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Autograd (Cont’d)

® When requires_grad=False, the computational graph is not constructed.

X2 = torch.tensor(3., requires_grad=True)

x3 = torch.tensor(5., requires_grad=False) @
y = torch.sin(x1+x2) + x3 ®/

x1 = torch.tensor(2., requires_grad=True) °

mwnn

y.backward()
print(xl.grad, x2.grad, x3.grad)

tensor(0.2837) tensor(@.2837) None
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Autograd (Cont’d)

® When requires_grad=False, the computational graph is not constructed.

x1
x2
x3 = torch.tensor(5., requires_grad=False)

y = torch.sin(x1+x2) + x3 @/ @

torch.tensor(2., requires_grad=True)
torch.tensor(3., requires_grad=True) °

mwnn

y.backward()
print(xl.grad, x2.grad, x3.grad)

tensor(0.2837) tensor(@.2837) None

® If you want to detach a tensor from the graph, you can use detach().
® If you want to get a python number from a tensor, you can use item().
print(x1)

print(xl.detach())
print(x1l.item())

tensor(2., requires_grad=True)
tensor(2.)
2.0
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Higher-order gradients

® PyTorch does no provide the direct APIs to compute higher-order gradients, such as
Hessian. Since for a high dimensional function, the storage and computation of full
higher-order gradients are extremely expensive.
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Higher-order gradients

® PyTorch does no provide the direct APIs to compute higher-order gradients, such as
Hessian. Since for a high dimensional function, the storage and computation of full
higher-order gradients are extremely expensive.

® In most cases, we should try to avoid it using some tricks, e.g., Hessian-vector product:

V2f(x)v = VTV f(x)).

® Remark: The Hessian-vector product has many applications, e.g. computing the
eigenvalues of the Hessian with power iteration.
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Higher-order gradients (Cont’d)

® Let us consider the example to regularize the square norm of model’s gradient:
G(f,z) = ||V f(2)||3. The objective function cost = R,, + 2 37" | G(f,z;).
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Higher-order gradients (Cont’d)

Let us consider the example to regularize the square norm of model’s gradient:
G(f,z) = ||V f(2)||3. The objective function cost = R,, + 2 37" | G(f,z;).

® To optimize the above objective function, we need to compute the gradient of G:
VG(f,x) =2V2f(z)V f ().

x = torch.tensor([1.0,2.0,3.0], requires_grad=True)
* The right code is for f(z) = 27 4+ 23 + 2. T = (ex).sum()
® Call autograd.grad twice. Set df = torch.autograd.grad(f, x, |create_graph=True

create_grad=True at the first time, which Print(dfiel)

indicates that the computational graph of

computing gradients will be constructed. G = df[@].pow(2).sum()

This graph will be used for the second the dG = torch.autograd.grad(G,x)
back-propogation to compute the print(dG[o])

second-order gradients. tensor([2., 4., 6.1, grad_fn=<AddBackward®>)
tensor([ 8., 16., 24.])
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Building neural network models

® The following codes build a two-layer ReLU network. The left define the network
manually, while the right uses the APIs provided in PyTorch.

import torch.nn as nn

class Net(nn.Module)

def __init__(self, input_d, width, ouput_d):

super(Net, self).__init_ ()

self.B = torch.randn(input_d, width)
self.c = torch.zeros(1, width)
self.A = torch.randn(width, output_d)
self.B = nn.Parameters(self.B)
self.C = nn.Parameters(self.C)
self.A = nn.Parameters(self.A)

def forward(self, x):

h = x.matmul(self.B) + self.C
h = torch.relu(h)

h = h.matmul(self.A)

return h

® nn.Module is a class to help decouple the process of input data and learnable parameters.

import torch.nn as nn

class Net(nn.Medule):

def

def

__init_ (self, input_d, width, ouput_d):

super(Net, self).__init_ ()
self.fcl = nn.Linear(input_d, width)
self.fc2 = nn.Linear(width, output_d)

forward(self, x):

h = self.fcl(x)

h = torch.relu(h)
h = self.fc2(x)
return h

The weights of a nn.Module are "nn.Parameters”, which is similar to tensor but with

“requires_grad=True".
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APIs for deep learning

TORCH.NN

These are the basic building block for graphs

torch.nn

® torch.nn contains many APIs for building ¢ Containers

neural network models, such as linear * Convolution Layers

layer, convolutional layer, batch * Pooling layers

normalization layer, lots of loss functions, = * Padding Layers

activation functions, and initializations. * Non-linear Activations (weighted sum, nonlinearity)

* Non-linear Activations (other)
* Normalization Layers

s Recurrent Layers

s Transformer Layers

® Linear Layers
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https://pytorch.org/docs/stable/nn.html

An example of LeNet

class LeNet(nn.Module):
def __init_ (self):
super(LeNet, self).__init_ ()
self.convl = nn.Conv2d(1, 6, kernel_size=3, padding=1)

self.pooll = nn.AvgPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
self.pool2 = nn.AvgPool2d(kernel_size=2)

self.classifier = nn.Sequential(
nn.Linear(16%5%5, 12@), nn.RelLU(),
nn.Linear(120, 84), nn.RelLU(),
nn.Linear(84, 10))

convolution pooling dense

convolution

def forward(self, x): pooling

ol = self.pooll(torch.relu(self.convl(x))) E
02 = self.pool2(torch.relu(self.conv2(ol))) o ©
03 = 02.view(-1, 16%5%5) D; :
04 = self.classifier(o3) L S2eatiomap

return o4 Foea mage mf:tffiap Cafeaturemap O feature map

® "“nn.sequential ()" provides an easy way to build up a sequential network (without any
skip connections).

® The dimensions: x: Bx1x28x28, ol: Bx6x14x14, 02: Bx16x5x5, 03: Bx400, o4: Bx10.
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Train a model

torch.optim implements many optimizers (e.g., SGD (+momentum), Adam, RMSprop, Rprop,

L-BFGS) and learning rate schedulers.

® How do we use it? See the codes
in the red rectangles.

® “net.parameters()"” returns
the parameters to be optimized.

® “optimizer.zero_grad()" sets
the parameters’ gradients to
zero, since “backward ()" will
accumulate the gradients.

® “optimizer.step()” performs
one-step update using the
gradients stored in parameter
tensors.

d=2
nsamples = 1000
batchsize = 50
m = 100

X = torch.rand(nsamples, d)
= torch.sin(X.sjum(dim=1))

et = Net(d, m, 1)
ptimizer = torch.optim.SGD(net.parameters(), 1lr=0.01, momentum=0.9)

loss_curve = []
for epoch in range(100):
for i in range(@, nsamples, batchsize):
x_batch, y_batch = X[i:(i+batchsize),:], y[i:(i+batchsize)]

optimizer.zero_grad()

y_pred = net(x_batch).squeeze()

loss = (y_pred-y_batch).pow(2).mean()
loss.backward()

optimizer.step()

loss_curve.append(loss.item())
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https://pytorch.org/docs/stable/optim.html

Source code of “torch.optim”

The code of torch.optim is quite neat, you can take a look at it.
https://github.com/pytorch/pytorch/tree/master/torch/optim
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https://github.com/pytorch/pytorch/tree/master/torch/optim

Save and load a model

PyTorch uses Python's pickle utility to serialize the data.

® Save a model:
state = {'model_state': net.state_dict(),
‘optimizer_state': optimizer.state_dict()}
torch.save(state, 'lenet.pt')
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https://docs.python.org/3/library/pickle.html
https://pytorch.org/tutorials/beginner/saving_loading_models.html

Save and load a model

PyTorch uses Python's pickle utility to serialize the data.
® Save a model:

state = {'model_state': net.state_dict(),
‘optimizer_state': optimizer.state_dict()}
torch.save(state, 'lenet.pt')

® Restore a model:

net = LeNet()
optimizer = torch.optim.SGD(net.parameters(), 1r=0.1)
checkpoint = torch.load('lenet.pt"’)

net.load_state_dict(checkpoint['model_state'])
optimizer.load_state_dict(checkpoint['optimizer_state'])
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Save and load a model

PyTorch uses Python's pickle utility to serialize the data.

® Save a model:
state = {'model_state': net.state_dict(),
‘optimizer_state': optimizer.state_dict()}
torch.save(state, 'lenet.pt')

® Restore a model:

net = LeNet()
optimizer = torch.optim.SGD(net.parameters(), 1r=0.1)
checkpoint = torch.load('lenet.pt"’)

net.load_state_dict(checkpoint['model_state'])
optimizer.load_state_dict(checkpoint['optimizer_state'])

® |Important functions: “torch.save(), torch.load(), load_state_dict(),
state_dict() ".

® Refer to https://pytorch.org/tutorials/beginner/saving_loading_models.html for
more details.
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https://docs.python.org/3/library/pickle.html
https://pytorch.org/tutorials/beginner/saving_loading_models.html

Reproducity

To keep our results reproducible, we need to fix the random seeds.

import numpy as np
np.random.seed(42)

import torch
torch.manual_seed(42)

B disable optimizations

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

® CUDA may use certain randomized methods for accelerations. So we must set it to use
deterministic methods.
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Dataloader

CPU / GPU Communication

Taken from

standford cs231n.

Data is here

If you aren’t careful, training can
bottleneck on reading data and
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads
to prefetch data
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DatalLoader (Cont’d)

tlass MyDataset:

def __init_ (self,X,y):
self.X, self.y =X, y Define dataset

def _ getitem_ (self,idx):
xi, yi = self.X[idx], self.yl[idx] # return the data on the index|
return xi, yi

def __len__(self):

return self.X.size(@) # return the data size

dataset = MyDataset(torch.rand(10@,2,30,30), torch.rand(100))
dataloader = torch.utils.data.Dataloader(

dataset=dataset,

batch_size = 50, # batch size
shuffle = False,

num_workers = 2 # use 2 cpu cores to parallel the dataloading

Define dataloader

)

for X_batch, y_batch in dataloader: use the dataloader
# use the batch data to do something

“torch.utils.data.Dataloader” can be used to mini-batch data, shuffle data, and
parallelize the loading process.
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Other important related packages

® The torchvision: package consists of popular datasets, model architectures, and common
image transformations for computer vision.
® MNIST, CIFAR10/100, Fashion-MNIST, ImageNet.
® Many large-scale pretrained models.
® Image transformations (used for data argumentation).
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Other important related packages

® The torchvision: package consists of popular datasets, model architectures, and common
image transformations for computer vision.

® MNIST, CIFAR10/100, Fashion-MNIST, ImageNet.
® Many large-scale pretrained models.
® Image transformations (used for data argumentation).

® The torchaudio package consists of 1/0, popular datasets and common audio
transformations.

® The torchtext package consists of data processing utilities and popular datasets for
natural language.

® The PyTorch Geometric package consists of many methods for deep learning on graphs
and other irregular structures, also known as geometric deep learning.
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References

® Tutorial:

® https://github.com/yunjey/pytorch-tutorial
® https://pytorch.org/tutorials/beginner/deep_learning 60min_blitz.html

® Example: https://github.com/pytorch/examples
® Document: https://pytorch.org/docs/stable/index. html

Source code: https://github.com/pytorch/pytorch
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