
A Quick Introduction to PyTorch

Instructor: Lei Wu 1

Mathematical Introduction to Machine Learning

Peking University, Fall 2023

1School of Mathematical Sciences; Center for Machine Learning Research
1 / 29



Deep learning packages overview

2 / 29



Packages comparison

This table is slightly outdated. Take also a look at https://jax.readthedocs.io/en/latest/

3 / 29



TensorFlow

• Tensor computation with
strong GPU acceleration

• Automatic differentiation

• Lots of API for building
deep neural networks.

• ...

4 / 29



PyTorch

PyTorch (website) is a python-based scientific computing package.

• NumPy-like tensor computations with strong GPU acceleration (A replacement of
NumPy).

• Automatic differentiation.

• Lots of APIs for building and training neural networks.

5 / 29

https://pytorch.org/


JAX

6 / 29



Core modules

7 / 29



PyTorch tensor

• PyTorch tensors are very similar to NumPy ndarrays.

• But they have a device attribute: ‘cpu’, ‘cuda’, or ‘cuda:2’.

• They might require gradients for the automatic differentiation.

8 / 29



PyTorch tensor (Cont’d)

• The APIs of PyTorch tensor are almost the same as NumPy array, although there exist
some differences.

• Refer to https://github.com/wkentaro/pytorch-for-numpy-users for detailed API
comparisons of NumPy and PyTorch.

9 / 29

https://github.com/wkentaro/pytorch-for-numpy-users


GPU acceleration

Let x be a torch tensor.

• y = x.cuda() creates a GPU tensor from a CPU tensor.

• z = y.cpu() creates a CPU tensor from GPU tensor.

• Let y1,y2 be two GPU tensor. Then, y1+y2 is evaluated on GPU.

• Acceleration: An example of matrix multiplication. In this example, GPU is 50 times
faster than CPU.

When there are several GPUs in your computer, you can use the following code.

• device=torch.device(‘cuda:1’) # use the first gpu

• y = x.to(device)

10 / 29



GPU acceleration

Let x be a torch tensor.

• y = x.cuda() creates a GPU tensor from a CPU tensor.

• z = y.cpu() creates a CPU tensor from GPU tensor.

• Let y1,y2 be two GPU tensor. Then, y1+y2 is evaluated on GPU.

• Acceleration: An example of matrix multiplication. In this example, GPU is 50 times
faster than CPU.

When there are several GPUs in your computer, you can use the following code.

• device=torch.device(‘cuda:1’) # use the first gpu

• y = x.to(device)

10 / 29



GPU acceleration

Let x be a torch tensor.

• y = x.cuda() creates a GPU tensor from a CPU tensor.

• z = y.cpu() creates a CPU tensor from GPU tensor.

• Let y1,y2 be two GPU tensor. Then, y1+y2 is evaluated on GPU.

• Acceleration: An example of matrix multiplication. In this example, GPU is 50 times
faster than CPU.

When there are several GPUs in your computer, you can use the following code.

• device=torch.device(‘cuda:1’) # use the first gpu

• y = x.to(device)

10 / 29



GPU acceleration

Let x be a torch tensor.

• y = x.cuda() creates a GPU tensor from a CPU tensor.

• z = y.cpu() creates a CPU tensor from GPU tensor.

• Let y1,y2 be two GPU tensor. Then, y1+y2 is evaluated on GPU.

• Acceleration: An example of matrix multiplication. In this example, GPU is 50 times
faster than CPU.

When there are several GPUs in your computer, you can use the following code.

• device=torch.device(‘cuda:1’) # use the first gpu

• y = x.to(device)

10 / 29



GPU acceleration

Let x be a torch tensor.

• y = x.cuda() creates a GPU tensor from a CPU tensor.

• z = y.cpu() creates a CPU tensor from GPU tensor.

• Let y1,y2 be two GPU tensor. Then, y1+y2 is evaluated on GPU.

• Acceleration: An example of matrix multiplication. In this example, GPU is 50 times
faster than CPU.

When there are several GPUs in your computer, you can use the following code.

• device=torch.device(‘cuda:1’) # use the first gpu

• y = x.to(device)

10 / 29



GPU acceleration

Let x be a torch tensor.

• y = x.cuda() creates a GPU tensor from a CPU tensor.

• z = y.cpu() creates a CPU tensor from GPU tensor.

• Let y1,y2 be two GPU tensor. Then, y1+y2 is evaluated on GPU.

• Acceleration: An example of matrix multiplication. In this example, GPU is 50 times
faster than CPU.

When there are several GPUs in your computer, you can use the following code.

• device=torch.device(‘cuda:1’) # use the first gpu

• y = x.to(device)

10 / 29



Interacting with NumPy

• torch.from numpy and torch.numpy.

• The conversion between numpy array and torch
tensor does not allocate new memory.

11 / 29



Computational graphs: forward propagation

Before proceeding to the automatic differentiation, we need to understand an important
concept: computational graph.

• A computational graph is a directed acyclic graph (DAG) that stores how the function is
computed.

• An example: y = sin(x1 + x2) + x3. The computational graph decomposes the
computation into the compositions of a series of simple operations.

12 / 29



Computational graphs: forward propagation

Before proceeding to the automatic differentiation, we need to understand an important
concept: computational graph.

• A computational graph is a directed acyclic graph (DAG) that stores how the function is
computed.

• An example: y = sin(x1 + x2) + x3. The computational graph decomposes the
computation into the compositions of a series of simple operations.

12 / 29



Computational graph: backward propagation

The computation graph is used to calculate the gradient.

• How to compute the gradients of those simple functions have been implemented in
PyTorch.

• Then, by the chain rule, we can compute the gradients of a general function through the
back-propogation of the computational graph.

• Example: ∂y
∂x1

= ∂y
∂z2

∂z2
∂z1

∂z1
∂x1

= 1× cos(z1)× 1. The value of z1 is stored during the
forward propagation, when the computational graph is constructed.

13 / 29



Computational graph: backward propagation

The computation graph is used to calculate the gradient.

• How to compute the gradients of those simple functions have been implemented in
PyTorch.

• Then, by the chain rule, we can compute the gradients of a general function through the
back-propogation of the computational graph.

• Example: ∂y
∂x1

= ∂y
∂z2

∂z2
∂z1

∂z1
∂x1

= 1× cos(z1)× 1. The value of z1 is stored during the
forward propagation, when the computational graph is constructed.

13 / 29



Computational graph: backward propagation

The computation graph is used to calculate the gradient.

• How to compute the gradients of those simple functions have been implemented in
PyTorch.

• Then, by the chain rule, we can compute the gradients of a general function through the
back-propogation of the computational graph.

• Example: ∂y
∂x1

= ∂y
∂z2

∂z2
∂z1

∂z1
∂x1

= 1× cos(z1)× 1. The value of z1 is stored during the
forward propagation, when the computational graph is constructed.

13 / 29



Autograd

• There are two ways to compute the gradients in PyTorch.

• The “backward()” function is more convenient since you don’t need to specify the
tensors. When calling backward() function, the chain rule is applied back to all the leaf
tensors with requires grad=True.

• A leaf tensor is a tensor you created directly, not a result of an operation. x1, x2, x3 are
the leaf tensors in the above example.

14 / 29



Autograd

• There are two ways to compute the gradients in PyTorch.

• The “backward()” function is more convenient since you don’t need to specify the
tensors. When calling backward() function, the chain rule is applied back to all the leaf
tensors with requires grad=True.

• A leaf tensor is a tensor you created directly, not a result of an operation. x1, x2, x3 are
the leaf tensors in the above example.

14 / 29



Autograd

• There are two ways to compute the gradients in PyTorch.

• The “backward()” function is more convenient since you don’t need to specify the
tensors. When calling backward() function, the chain rule is applied back to all the leaf
tensors with requires grad=True.

• A leaf tensor is a tensor you created directly, not a result of an operation. x1, x2, x3 are
the leaf tensors in the above example.

14 / 29



Autograd: backward function

• Notice that “backward()” function accumulate sthe gradients.

15 / 29



Autograd (Cont’d)

• When requires grad=False, the computational graph is not constructed.

• If you want to detach a tensor from the graph, you can use detach().

• If you want to get a python number from a tensor, you can use item().

16 / 29



Autograd (Cont’d)

• When requires grad=False, the computational graph is not constructed.

• If you want to detach a tensor from the graph, you can use detach().

• If you want to get a python number from a tensor, you can use item().

16 / 29



Autograd (Cont’d)

• When requires grad=False, the computational graph is not constructed.

• If you want to detach a tensor from the graph, you can use detach().

• If you want to get a python number from a tensor, you can use item().

16 / 29



Higher-order gradients

• PyTorch does no provide the direct APIs to compute higher-order gradients, such as
Hessian. Since for a high dimensional function, the storage and computation of full
higher-order gradients are extremely expensive.

• In most cases, we should try to avoid it using some tricks, e.g., Hessian-vector product:

∇2f(x)v = ∇(vT∇f(x)).

• Remark: The Hessian-vector product has many applications, e.g. computing the
eigenvalues of the Hessian with power iteration.

17 / 29



Higher-order gradients

• PyTorch does no provide the direct APIs to compute higher-order gradients, such as
Hessian. Since for a high dimensional function, the storage and computation of full
higher-order gradients are extremely expensive.

• In most cases, we should try to avoid it using some tricks, e.g., Hessian-vector product:

∇2f(x)v = ∇(vT∇f(x)).

• Remark: The Hessian-vector product has many applications, e.g. computing the
eigenvalues of the Hessian with power iteration.

17 / 29



Higher-order gradients

• PyTorch does no provide the direct APIs to compute higher-order gradients, such as
Hessian. Since for a high dimensional function, the storage and computation of full
higher-order gradients are extremely expensive.

• In most cases, we should try to avoid it using some tricks, e.g., Hessian-vector product:

∇2f(x)v = ∇(vT∇f(x)).

• Remark: The Hessian-vector product has many applications, e.g. computing the
eigenvalues of the Hessian with power iteration.

17 / 29



Higher-order gradients (Cont’d)

• Let us consider the example to regularize the square norm of model’s gradient:
G(f, x) = ‖∇f(x)‖22. The objective function cost = R̂n + λ

n

∑n
i=1 G(f, xi).

• To optimize the above objective function, we need to compute the gradient of G:

∇G(f, x) = 2∇2f(x)∇f(x).

• The right code is for f(x) = x2
1 + x2

2 + x2
3.

• Call autograd.grad twice. Set
create grad=True at the first time, which
indicates that the computational graph of
computing gradients will be constructed.
This graph will be used for the second the
back-propogation to compute the
second-order gradients.

18 / 29



Higher-order gradients (Cont’d)

• Let us consider the example to regularize the square norm of model’s gradient:
G(f, x) = ‖∇f(x)‖22. The objective function cost = R̂n + λ

n

∑n
i=1 G(f, xi).

• To optimize the above objective function, we need to compute the gradient of G:

∇G(f, x) = 2∇2f(x)∇f(x).

• The right code is for f(x) = x2
1 + x2

2 + x2
3.

• Call autograd.grad twice. Set
create grad=True at the first time, which
indicates that the computational graph of
computing gradients will be constructed.
This graph will be used for the second the
back-propogation to compute the
second-order gradients.

18 / 29



Higher-order gradients (Cont’d)

• Let us consider the example to regularize the square norm of model’s gradient:
G(f, x) = ‖∇f(x)‖22. The objective function cost = R̂n + λ

n

∑n
i=1 G(f, xi).

• To optimize the above objective function, we need to compute the gradient of G:

∇G(f, x) = 2∇2f(x)∇f(x).

• The right code is for f(x) = x2
1 + x2

2 + x2
3.

• Call autograd.grad twice. Set
create grad=True at the first time, which
indicates that the computational graph of
computing gradients will be constructed.
This graph will be used for the second the
back-propogation to compute the
second-order gradients.

18 / 29



Building neural network models

• The following codes build a two-layer ReLU network. The left define the network
manually, while the right uses the APIs provided in PyTorch.

• nn.Module is a class to help decouple the process of input data and learnable parameters.
The weights of a nn.Module are “nn.Parameters”, which is similar to tensor but with
“requires grad=True”.

19 / 29



APIs for deep learning

• torch.nn contains many APIs for building
neural network models, such as linear
layer, convolutional layer, batch
normalization layer, lots of loss functions,
activation functions, and initializations.

20 / 29

https://pytorch.org/docs/stable/nn.html


An example of LeNet

• “nn.sequential()” provides an easy way to build up a sequential network (without any
skip connections).

• The dimensions: x: Bx1x28x28, o1: Bx6x14x14, o2: Bx16x5x5, o3: Bx400, o4: Bx10.

21 / 29



Train a model

torch.optim implements many optimizers (e.g., SGD (+momentum), Adam, RMSprop, Rprop,
L-BFGS) and learning rate schedulers.

• How do we use it? See the codes
in the red rectangles.

• “net.parameters()” returns
the parameters to be optimized.

• “optimizer.zero grad()” sets
the parameters’ gradients to
zero, since “backward()” will
accumulate the gradients.

• “optimizer.step()” performs
one-step update using the
gradients stored in parameter
tensors.

22 / 29

https://pytorch.org/docs/stable/optim.html


Source code of “torch.optim”

The code of torch.optim is quite neat, you can take a look at it.
https://github.com/pytorch/pytorch/tree/master/torch/optim

23 / 29

https://github.com/pytorch/pytorch/tree/master/torch/optim


Save and load a model

PyTorch uses Python’s pickle utility to serialize the data.

• Save a model:

• Restore a model:

• Important functions: “torch.save(), torch.load(), load state dict(),

state dict() ”.

• Refer to https://pytorch.org/tutorials/beginner/saving_loading_models.html for
more details.

24 / 29

https://docs.python.org/3/library/pickle.html
https://pytorch.org/tutorials/beginner/saving_loading_models.html


Save and load a model

PyTorch uses Python’s pickle utility to serialize the data.

• Save a model:

• Restore a model:

• Important functions: “torch.save(), torch.load(), load state dict(),

state dict() ”.

• Refer to https://pytorch.org/tutorials/beginner/saving_loading_models.html for
more details.

24 / 29

https://docs.python.org/3/library/pickle.html
https://pytorch.org/tutorials/beginner/saving_loading_models.html


Save and load a model

PyTorch uses Python’s pickle utility to serialize the data.

• Save a model:

• Restore a model:

• Important functions: “torch.save(), torch.load(), load state dict(),

state dict() ”.

• Refer to https://pytorch.org/tutorials/beginner/saving_loading_models.html for
more details.

24 / 29

https://docs.python.org/3/library/pickle.html
https://pytorch.org/tutorials/beginner/saving_loading_models.html


Save and load a model

PyTorch uses Python’s pickle utility to serialize the data.

• Save a model:

• Restore a model:

• Important functions: “torch.save(), torch.load(), load state dict(),

state dict() ”.

• Refer to https://pytorch.org/tutorials/beginner/saving_loading_models.html for
more details.

24 / 29

https://docs.python.org/3/library/pickle.html
https://pytorch.org/tutorials/beginner/saving_loading_models.html


Reproducity

To keep our results reproducible, we need to fix the random seeds.

• CUDA may use certain randomized methods for accelerations. So we must set it to use
deterministic methods.

25 / 29



DataLoader

Taken from standford cs231n.

26 / 29



DataLoader (Cont’d)

“torch.utils.data.DataLoader” can be used to mini-batch data, shuffle data, and
parallelize the loading process.

27 / 29



Other important related packages

• The torchvision: package consists of popular datasets, model architectures, and common
image transformations for computer vision.

• MNIST, CIFAR10/100, Fashion-MNIST, ImageNet.
• Many large-scale pretrained models.
• Image transformations (used for data argumentation).

• The torchaudio package consists of I/O, popular datasets and common audio
transformations.

• The torchtext package consists of data processing utilities and popular datasets for
natural language.

• The PyTorch Geometric package consists of many methods for deep learning on graphs
and other irregular structures, also known as geometric deep learning.

28 / 29

http://pytorch.org/vision/stable/index.html
https://pytorch.org/audio/stable/index.html
https://pytorch.org/text/stable/index.html
https://github.com/rusty1s/pytorch_geometric


Other important related packages

• The torchvision: package consists of popular datasets, model architectures, and common
image transformations for computer vision.

• MNIST, CIFAR10/100, Fashion-MNIST, ImageNet.
• Many large-scale pretrained models.
• Image transformations (used for data argumentation).

• The torchaudio package consists of I/O, popular datasets and common audio
transformations.

• The torchtext package consists of data processing utilities and popular datasets for
natural language.

• The PyTorch Geometric package consists of many methods for deep learning on graphs
and other irregular structures, also known as geometric deep learning.

28 / 29

http://pytorch.org/vision/stable/index.html
https://pytorch.org/audio/stable/index.html
https://pytorch.org/text/stable/index.html
https://github.com/rusty1s/pytorch_geometric


Other important related packages

• The torchvision: package consists of popular datasets, model architectures, and common
image transformations for computer vision.

• MNIST, CIFAR10/100, Fashion-MNIST, ImageNet.
• Many large-scale pretrained models.
• Image transformations (used for data argumentation).

• The torchaudio package consists of I/O, popular datasets and common audio
transformations.

• The torchtext package consists of data processing utilities and popular datasets for
natural language.

• The PyTorch Geometric package consists of many methods for deep learning on graphs
and other irregular structures, also known as geometric deep learning.

28 / 29

http://pytorch.org/vision/stable/index.html
https://pytorch.org/audio/stable/index.html
https://pytorch.org/text/stable/index.html
https://github.com/rusty1s/pytorch_geometric


Other important related packages

• The torchvision: package consists of popular datasets, model architectures, and common
image transformations for computer vision.

• MNIST, CIFAR10/100, Fashion-MNIST, ImageNet.
• Many large-scale pretrained models.
• Image transformations (used for data argumentation).

• The torchaudio package consists of I/O, popular datasets and common audio
transformations.

• The torchtext package consists of data processing utilities and popular datasets for
natural language.

• The PyTorch Geometric package consists of many methods for deep learning on graphs
and other irregular structures, also known as geometric deep learning.

28 / 29

http://pytorch.org/vision/stable/index.html
https://pytorch.org/audio/stable/index.html
https://pytorch.org/text/stable/index.html
https://github.com/rusty1s/pytorch_geometric


References

• Tutorial:
• https://github.com/yunjey/pytorch-tutorial
• https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

• Example: https://github.com/pytorch/examples

• Document: https://pytorch.org/docs/stable/index.html

• Source code: https://github.com/pytorch/pytorch

29 / 29

https://github.com/yunjey/pytorch-tutorial
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://github.com/pytorch/examples
https://pytorch.org/docs/stable/index.html
https://github.com/pytorch/pytorch

