
Lecture: Introduction to LP, SDP and SOCP

Zaiwen Wen

Beijing International Center For Mathematical Research
Peking University

http://bicmr.pku.edu.cn/~wenzw/bigdata2015.html
wenzw@pku.edu.cn

Acknowledgement: this slides is based on Prof. Farid Alizadeh lecture notes

1/29

http://bicmr.pku.edu.cn/~wenzw/bigdata2015.html 


2/29

Linear Programming (LP)

Primal

min c1x1 + . . .+ cnxn

s.t. a11x1 + . . .+ a1nxn = b1

. . .

am1x1 + . . .+ amnxn = bm

xi ≥ 0

Dual

max b1y1 + . . .+ bmym

s.t. a11y1 + . . .+ am1ym ≤ c1

. . .

a1ny1 + . . .+ amnym ≤ cn
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Linear Programming (LP)

more succinctly

Primal (P)

min c>x

s.t. Ax = b

x ≥ 0

Dual (D)

max b>y

s.t. A>y + s = c

s ≥ 0
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Weak duality

Suppose
x is feasible to (P)
(y, s) is feasible to (D)

Then

0 ≤ x>s because xisi ≥ 0

= x>(c− A>y)

= c>x− (Ax)>y

= c>x− b>y

= duality gap
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Key Properties of LP

Strong duality: If both Primal and Dual are feasible then at the
optimum

c>x = b>y⇐⇒ x>s = 0

complementary slackness: This implies

x>s = x1s1 + . . .+ xnsn = 0 and therefore
xisi = 0
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complementarity

Putting together primal feasibility, dual feasibility and
complementarity together we get a square system of equations

Ax = b

A>y + s = c

xisi = 0 for i = 1, . . . , n

At least in principle this system determines the primal and dual
optimal values
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Algebraic characterization

We can define x ◦ s = (x1s1, . . . , xnsn)> and

Lx : y→ (x1y1, . . . , xnyn)> i.e. Lx = Diag(x)

We can write complementary slackness conditions as

x ◦ s = Lxs = LxLs1 = 0

1, the vector of all ones, is the identity element:

x ◦ 1 = x
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Semidefinite Programming (SDP)

X � Y means that the the symmetric matrix X − Y is positive
semidefinite

X is positive semidefinite

a>Xa ≥ 0 for all vector a⇐⇒ X = B>B⇐⇒

all eigenvalues of X is nonnegative
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Semidefinite Programming (SDP)

〈X,Y〉 =
∑

ij XijYij = Tr(XY)

Primal (P)

min 〈C1,X1〉+ . . .+ 〈Cn,Xn〉
s.t. 〈A11,X1〉+ . . .+ 〈A1n,Xn〉 = b1

. . .

〈Am1,X1〉+ . . .+ 〈Amn,Xn〉 = bm

Xi � 0

Dual (D)

max b1y1 + . . .+ bmym

s.t. A11y1 + . . .+ Am1ym + S1 = c1

. . .

A1ny1 + . . .+ Amnym + Sn = cn

Si � 0
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Simplified SDP

For simplicity we deal with single variable SDP:
Primal (P)

min 〈C,X〉
s.t. 〈A1,X〉 = b1

. . .

〈Am,X〉 = bm

X � 0

Dual (D)

max b>y

s.t.
∑

i

yiAi + S = C

S � 0

A single variable LP is trivial
But a single matrix SDP is as general as a multiple matrix
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Weak duality in SDP

Just as in LP
〈X, S〉 = 〈C,X〉 − b>y

Also if both X � 0 and S � 0 then

〈X, S〉 = Tr(XS1/2S1/2) = Tr(S1/2XS1/2) ≥ 0

because S1/2XS1/2 � 0

Thus
〈X, S〉 = 〈C,X〉 − b>y ≥ 0
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Complementarity Slackness Theorem

X � 0 and S � 0 and 〈X, S〉 = 0 implies

XS = 0

Proof:
〈X, S〉 = Tr(XS1/2S1/2) = Tr(S1/2XS1/2)

Thus Tr(S1/2XS1/2) = 0. Since S1/2XS1/2 � 0, then

S1/2XS1/2 = 0 =⇒ S1/2X1/2X1/2S1/2 = 0

X1/2S1/2 = 0 =⇒ XS = 0



13/29

Algebraic properties of SDP

For reasons to become clear later it is better to write
complementary slackness conditions as

XS + SX
2

= 0

It can be shown that if X � 0 and S � 0, then XS = 0 iff

XS + SX = 0
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Algebraic properties of SDP

Definition: X ◦ S = XS+SX
2

The binary operation ◦ is commutative X ◦ S = S ◦ X

◦ is not associative: X ◦ (Y ◦ Z) 6= (X ◦ Y) ◦ Z in general

But X ◦ (X ◦ X) = (X ◦ X) ◦ X. Thus X◦p = Xp is well defined

In general X ◦ (X2 ◦ Y) = X2 ◦ (X ◦ Y)

The identity matrix I is identity w.r.t ◦

Define the operator

LX : Y → X ◦ Y, thus X ◦ S = LX(S) = LX(LS(I))
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Constraint Qualifications

Unlike LP we need some conditions for the optimal values of
Primal and Dual SDP to coincide

Here are two:
If there is primal-feasible X � 0 (i.e. X is positive definite)
If there is dual-feasible S � 0

When strong duality holds 〈X, S〉 = 0



16/29

KKT Condition

Thus just like LP The system of equations

〈Ai,X〉 = bi, for i = 1, . . . ,m∑
i

yiAi + S = C

X ◦ S = 0

Gives us a square system
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Second Order Cone Programming (SOCP)

For simplicity we deal with single variable SOCP:
Primal (P)

min c>x

s.t. Ax = b

xQ � 0

Dual (D)

max b>y

s.t. A>y + s = c

sQ � 0

the vectors x, s, c are indexed from zero

If z = (z0, z1, . . . , zn)> and z̄ = (z1, . . . , zn)>

zQ ≥ 0⇐⇒ z0 ≥ ‖z̄‖
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Illustration of SOC

Q = {z | z0 ≥ ‖z̄‖}
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Weak Duality in SOCP

The single block SOCP is not as trivial as LP but it still can be
solved analytically

weak duality: Again as in LP and SDP

x>s = c>x− b>y = duality gap

If x, s �Q 0, then

x>s = x0s0 + x̄>s̄ ≥
≥ ‖x̄‖ · ‖s̄‖+ x̄>s̄ since x, s �Q 0

≥ |x̄>s̄|+ x̄>s̄ Cauchy-Schwartz inequality
≥ 0
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Complementary Slackness for SOCP

Given x �Q 0, s �Q 0 and x>s = 0. Assume x0 > 0 and s0 > 0

We have

(∗) x2
0 ≥

n∑
i=1

x2
i

(∗∗) s2
0 ≥

n∑
i=1

s2
i ⇐⇒ x2

0 ≥
n∑

i=1

s2
i x2

0

s2
0

(∗ ∗ ∗) x>s = 0⇐⇒ −x0s0 =
∑

i

xisi ⇐⇒ −2x2
0 =

n∑
i=1

2xisix0

s0

Adding (*), (**), (***), we get 0 ≥
∑n

i=1

(
xi + six0

s0

)2

This implies
xis0 + x0si = 0, for i = 1, . . . , n
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Illustration of SOC

When x �Q 0, s �Q 0 are orthogonal both must be on the boundary in
such a way that their projection on the x1, . . . , xn plane is collinear
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Strong Duality

at the optimum
c>x = b>y⇐⇒ x>s = 0

Like SDP constraint qualifications are required

If there is primal-feasible x �Q 0

If there is dual-feasible s �Q 0
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Complementary Slackness for SOCP

Thus again we have a square system

Ax = b,

A>y + s = c

x>s = 0

x0si + s0xi = 0
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Algebraic properties of SOCP

Let us define a binary operation for vectors x and s both indexed
from zero 

x0
x1
...

xn

 ◦


s0
s1
...

sn

 =


x>s

x0s1 + s0x1
...

x0sn + s0xn


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Algebraic properties of SOCP

The binary operation ◦ is commutative x ◦ s = s ◦ x

◦ is not associative: x ◦ (y ◦ z) 6= (x ◦ y) ◦ z in general

But x ◦ (x ◦ x) = (x ◦ x) ◦ x. Thus x◦p = xp is well defined

In general x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y)

The identity matrix I is identity w.r.t ◦

e = (1, 0, . . . , 0)> is the identity: x ◦ e = x
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Algebraic properties of SOCP

Define the operator
Lx : y→ x ◦ y

Lx = Arw(x) =

(
x0 x̄>

x̄ x0I

)
x ◦ s = Arw(x)s = Arw(x)Arw(s)e
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Summary

Properties
LP SDP SOCP

binary operator x ◦ s = (xisi) X ◦ S = XS+SX
2 x ◦ s =

(
x>s

x0s̄ + s0x̄

)
identity 1 I e = (1, 0, . . . , 0)>

associative yes no no
LX y→ Diag(x)y Y → XY+YX

2 y→ Arw(x)y
Primal feasibility Ax = b 〈Ai,X〉 = bi Ax = b

dual feasility A>y + s = c
∑

i yiAi + S = C A>y + s = c
complementarity LxLs1 = 0 LX(LS(I)) = 0 LxLse = 0
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Conic LP

A set K ⊆ Rn is a proper cone if
It is a cone: If x ∈ K =⇒ ax ∈ K for all α ≥ 0

It is convex: x, y ∈ K =⇒ αx + (1− α)y ∈ K for α ∈ [0, 1]

It is pointed: K ∩ (−K) = {0}

It is closed

It has non-empty interior in Rn

dual cone:
K∗ = {x | for all z ∈ K, 〈x, z〉 ≥ 0}
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Conic LP

Conic-LP is defined as the following optimization problem:
Primal (P)

min c>x

s.t. Ax = b

x ∈ K

Dual (D)

max b>y

s.t. A>y + s = c

s ∈ K∗

For LP K is the nonnegative orthant

For SDP K is the cone of positive semidefinite matrices

For SOCP K is the circular or Lorentz cone

In all three cases the cones are self-dual K = K∗


