
Dynamic Programming: MDP

http://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Acknowledgement: this slides is based on OpenAI Spinning Up and and Prof. Shipra
Agrawal’s lecture notes

1/68

http://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

2/68

Outline

1 Introduction

2 Dynamic Programming

3 Markov Decision Process (MDP)

4 Bellman Equation

5 Example: Airfare Pricing

6 Iterative algorithms (discounted reward case)
Value Iteration
Q-value iteration
Policy iteration

3/68

What Can RL Do?

RL methods have recently enjoyed a wide variety of successes. For
example, it’s been used to teach computers to control robots in
simulation

4/68

What Can RL Do?

It’s also famously been used to create breakthrough AIs for
sophisticated strategy games, most notably ‘Go‘ and ‘Dota‘, taught
computers to ‘play Atari games‘ from raw pixels, and trained
simulated robots ‘to follow human instructions‘.

Go: https://deepmind.com/research/alphago

Dota: https://blog.openai.com/openai-five

play Atari games: https://deepmind.com/research/dqn/

to follow human instructions: https://blog.openai.com/
deep-reinforcement-learning-from-human-preferences

https://deepmind.com/research/alphago
https://blog.openai.com/openai-five
https://deepmind.com/research/dqn/
https://blog.openai.com/deep-reinforcement-learning-from-human-preferences
https://blog.openai.com/deep-reinforcement-learning-from-human-preferences

5/68

RL: agent and environment

environment: the world that the agent lives in and interacts with.
At every step of interaction, the agent sees a (possibly partial)
observation of the state of the world, and then decides on an
action to take. The environment changes when the agent acts on
it, but may also change on its own.

agent: perceives a reward signal from the environment, a
number that tells it how good or bad the current world state is.
The goal of the agent is to maximize its cumulative reward,
called return. Reinforcement learning methods are ways that the
agent can learn behaviors to achieve its goal.

6/68

Outline

1 Introduction

2 Dynamic Programming

3 Markov Decision Process (MDP)

4 Bellman Equation

5 Example: Airfare Pricing

6 Iterative algorithms (discounted reward case)
Value Iteration
Q-value iteration
Policy iteration

7/68

Dynamic Programming

Basically, we want to solve a big problem that is hard

We can first solve a few smaller but similar problems, if those can
be solved, then the solution to the big problem will be easy to get

To solve each of those smaller problems, we use the same idea,
we first solve a few even smaller problems.

Continue doing it, we will eventually encounter a problem we
know how to solve

Dynamic programming has the same feature, the difference is that at
each step, there might be some optimization involved.

8/68

Shortest Path Problem

You have a graph, you want to find the shortest path from s to t

Here we use dij to denote the distance between node i and node j

9/68

DP formulation for the shortest path problem

Let Vi denote the shortest distance between i to t.
Eventually, we want to compute Vs

It is hard to directly compute Vi in general

However, we can just look one step

We know if the first step is to move from i to j, the shortest distance
we can get must be dij + Vj.

To minimize the total distance, we want to choose j to minimize
dij + Vj

To write into a math formula, we get

Vi = min
j
{dij + Vj}

10/68

DP for shortest path problem

We call this the recursion formula

Vi = min
j
{dij + Vj} for all i

We also know if we are already at our destination, then the distance
is 0. i.e.,

Vt = 0

The above two equations are the DP formulation for this problem

11/68

Solve the DP

Given the formula, how to solve the DP?

Vi = min
j
{dij + Vj} for all i, Vt = 0

We use backward induction.
From the last node (which we know the value), we solve the
values of V ′s backwardly.

12/68

Example

We have Vt = 0. Then we have

Vf = min
(f ,j) is a path

{dfj + Vj}

Here, we only have one path, thus Vf = 5 + Vt = 5

Similarly, Vg = 2

13/68

Example Continued 1

We have Vt = 0,Vf = 5 and Vg = 2

Now consider c, d, e. For c and e there is only one path

Vc = dcf + Vf = 7, Ve = deg + Vg = 5

For d, we have

Vg = min
(d,j) is a path

{ddj + Vj} = min{ddf + Vf , ddg + Vg} = 10

The optimal way to choose at d is go to g

14/68

Example Continued 2

We got Vc = 7,Vd = 10 and Ve = 5. Now we compute Va and Vb

Va = min{dac + Vc, dad + Vd} = min{3 + 7, 1 + 10} = 10

Vb = min{dbd + Vd, dbe + Ve} = min{1 + 10, 2 + 5} = 7

and the optimal path to go at a is to choose c, and the optimal
path to go at b is to choose e.

15/68

Example Continued 3

Finally, we have

Vs = min{dsa + Va, dsb + Vb} = min{1 + 10, 9 + 7} = 11

and the optimal path to go at s is to choose a

Therefore, we found the optimal path is 11, and by connecting
the optimal path, we get

s → a → c → f → t

16/68

Summary of the example

In the example, we saw that we have those Vi’s, indicating the
shortest length to go from i to t.

We call this V the value function

We also have those nodes s, a, b, . . . , g, t

We call them the states of the problem

The value function is a function of the state

And the recursion formula

Vi = min
j
{dij + Vj} for all i

connects the value function at different states. It is known as the
Bellman equation

17/68

Stochastic DP

In some cases, when you choose action a at x, the next state is not
certain (e.g., you decide a price, but the demand is random).

There will be p(x, y, a) probability you move from x to y if you
choose action a ∈ A(x)

Then the recursion formula becomes:

V(x) = min
a∈A(x)

{r(x, a) +
∑

y

p(x, y, a)V(y)}

or if we choose to use the expectation notation:

V(x) = min
a∈A(x)

{r(x, a) + EV(x, a))}

18/68

Example: Stochastic Shortest Path Problem

Stochastic setting:
One no longer controls which exact node to jump to next
Instead one can choose between different actions a ∈ A
Each action a is associated with a set of transition probabilities
p(j|i; a) for all i, j ∈ S.
The arc length may be random wija

Objective:
One needs to decide on the action for every possible current
node. In other words, one wants to find a policy or strategy that
maps from S to A.

Bellman Equation for Stochastic SSP:

V(i) = min
a

∑
j∈S

p(j|i; a)(wija + V(j)), i ∈ S

19/68

Tetris

Height: 12
Width: 7
Rotate and move the falling
shape
Gravity related to current
height
Score when eliminating an
entire level
Game over when reaching
the ceiling

20/68

DP Model of Tetris

State: The current board, the current falling tile, predictions of
future tiles
Termination state: when the tiles reach the ceiling, the game is
over with no more future reward
Action: Rotation and shift
System Dynamics: The next board is deterministically
determined by the current board and the player’s placement of
the current tile. The future tiles are generated randomly.
Uncertainty: Randomness in future tiles
Transitional cost g: If a level is cleared by the current action,
score 1; otherwise score 0.
Objective: Expectation of total score.

21/68

Interesting facts about Tetris

First released in 1984 by Alexey Pajitnov from the Soviet Union

Has been proved to be NP-complete.

Game will be over with probability 1.

For a 12 × 7 board, the number of possible states ≈ 212×7 ≈ 1025

Highest score achieved by human ≈ 1 million

Highest score achieved by algorithm ≈ 35 million (average
performance)

22/68

Outline

1 Introduction

2 Dynamic Programming

3 Markov Decision Process (MDP)

4 Bellman Equation

5 Example: Airfare Pricing

6 Iterative algorithms (discounted reward case)
Value Iteration
Q-value iteration
Policy iteration

23/68

States and Observations

state: s is a complete description of the state of the world. There
is no information about the world which is hidden from the state.
An observation o is a partial description of a state, which may
omit information.

In deep RL, we almost always represent states and observations
by a “real-valued vector, matrix, or higher-order tensor”. For
instance, a visual observation could be represented by the RGB
matrix of its pixel values; the state of a robot might be
represented by its joint angles and velocities.

When the agent is able to observe the complete state of the
environment, we say that the environment is fully observed.
When the agent can only see a partial observation, we say that
the environment is partially observed.

We often write that the action is conditioned on the state, when
in practice, the action is conditioned on the observation because
the agent does not have access to the state.

24/68

Action Spaces

Different environments allow different kinds of actions. The set of
all valid actions in a given environment is often called the action
space. Some environments, like Atari and Go, have discrete
action spaces, where only a finite number of moves are
available to the agent. Other environments, like where the agent
controls a robot in a physical world, have continuous action
spaces. In continuous spaces, actions are real-valued vectors.

This distinction has some quite-profound consequences for
methods in deep RL. Some families of algorithms can only be
directly applied in one case, and would have to be substantially
reworked for the other.

25/68

Markov decision processes

The defining property of MDPs is the Markov property which
says that the future is independent of the past given the current
state. This essentially means that the state in this model
captures all the information from the past that is relevant in
determining the future states and rewards.
A Markov Decision Process (MDP) is specified by a tuple
(S, s1,A,P,R,H), where S is the set of states, s1 is the starting
state, A is the set of actions. The process proceeds in discrete
rounds t = 1, 2, · · · ,H, starting in the initial state s1. In every
round, t the agent observes the current state st ∈ S, takes an
action at ∈ A, and observes a feedback in form of a reward signal
rt+1 ∈ R. The agent then observes transition to the next state
st+1 ∈ S.

26/68

Formal definition

The probability of transitioning to a particular state depends only
on current state and action, and not on any other aspect of the
history. The matrix P ∈ [0, 1]S×A×Sspecifies these probabilities.
That is,

Pr(st+1 = s′ | history till time t) = Pr(st+1 = s′ | st = s, at = a)

= P(s, a, s′)

The reward distribution depends only on the current state and
action. So, that the expected reward at time t is a function of
current state and action. A matrix R specifies these rewards.

E[rt+1 | history till time t] = E[rt+1 | st = s, at = a] = R(s, a)

Let R(s, a, s′) be the expected (or deterministic) reward when
action a is taken in state s and transition to state s′ is observed.
Then, we can obtain the same model as above by defining

R(s, a) = E[rt+1 | st = s, at = a] = Es′∼P(s,a)[R(s, a, s′)]

27/68

Policy

A policy specifies what action to take at any time step. A history
dependent policy at time t is a mapping from history till time t to
an action. A Markovian policy is a mapping from state space to
action π: S → A. Due to Markovian property of the MDP, it
suffices to consider Markovian policies (in the sense that for any
history dependent policy same performance can be achieved by
a Markovian policy). Therefore, in this text, policy refers to a
Markovian policy.
A deterministic policy π: S → A is mapping from any given state
to an action. A randomized policy π : S → ∆A is a mapping from
any given state to a distribution over actions. Following a policy
πt at time t means that if the current state st = s, the agent takes
action at = πt(s) (or at ∼ π(s) for randomized policy). Following a
stationary policy π means that πt = π for all rounds t = 1, 2, . . .

28/68

Policy

Any stationary policy π defines a Markov chain, or rather a
’Markov reward process’ (MRP), that is, a Markov chain with
reward associated with every transition.
The transition probability vector and reward for this MRP in state
s is given by Pr (s′|s) = Pπ

s ,E [rt|s] = rπs , where Pπ is an S × S
matrix, and rπ is an S-dimensional vector defined as:

Pπ
s,s′ = Ea∼π(s)

[
P
(
s, a, s′

)]
,∀s, s′ ∈ S

rπs = Ea∈π(s)[R(s, a)]

The stationary distribution (if exists) of this Markov chain when
starting from state s1 is also referred to as the stationary
distribution of the policy π, denoted by dπ:

dπ(s) = lim
t→∞

Pr (st = s|s1, π)

29/68

Goals, finite horizon MDP

The tradeoffs between immediate reward vs. future rewards of
the sequential decisions and the need for planning ahead is
captured by the goal of the Markov Decision Process. At a high
level, the goal is to maximize some form of cumulative reward.
Some popular forms are total reward, average reward, or
discounted sum of rewards.

finite horizon MDP
actions are taken for t = 1, . . . ,H where H is a finite horizon. The
total (discounted) reward criterion is simply to maximize the
expected total (discounted) rewards in an episode of length H.
(In reinforcement learning context, when this goal is used, the
MDP is often referred to as an episodic MDP.) For discount
0 ≤ γ ≤ 1, the goal is to maximize

E

[
H∑

t=1

γt−1rt|s1

]

30/68

Infinite horizon MDP

Expected total discounted reward criteria: The most popular form
of cumulative reward is expected discounted sum of rewards.
This is an asymptotic weighted sum of rewards, where with time
the weights decrease by a factor of γ < 1. This essentially
means that the immediate returns more valuable than those far
in the future.

lim
T→∞

E

[
T∑

t=1

γt−1rt|s1

]

31/68

Infinite horizon MDP

Expected total reward criteria: Here, the goal is to maximize

lim
T→∞

E

[
T∑

t=1

rt|s1

]

The limit may not always exist or be bounded. We are only
interested in cases where above exists and is finite. This requires
restrictions on reward and/or transition models. Interesting cases
include the case where there is an undesirable state, the reward
after reaching that state is 0. For example, end of a computer
game. The goal would be to maximize the time to reach this
state. (A minimization version of this model is where there is a
cost associated with each state and the game is to minimize the
time to reach winning state, called the shortest path problem).

32/68

Infinite horizon MDP

Expected average reward criteria: Maximize

lim
T→∞

E

[
1
T

T∑
t=1

rt|s1

]
Intuitively, the performance in a few initial rounds does not matter
here, what we are looking for is a good asymptotic performance.
This limit may not always exist. Assuming bounded rewards and
finite state spaces, it exists under some further conditions on
policy used.

33/68

Gain of the MDP

Gain (roughly the ‘expected value objective’ or formal goal) of an
MDP when starting in state s1 is defined as (when supremum exists):

episodic MDP:

J (s1) = sup
{πt}

E

[
H∑

t=1

γt−1rt|s1

]

Infinite horizon expected total reward:

J (s1) = sup
{πt}

lim
T→∞

E

[
T∑

t=1

rt|s1

]

Infinite horizon discounted sum of rewards:

J (s1) = sup
{πt}

lim
T→∞

E

[
T∑

t=1

γt−1rt|s1

]

34/68

Gain of the MDP

infinite horizon average reward:

J (s1) = sup
{πt}

lim
T→∞

E

[
1
T

T∑
t=1

rt|s1

]

Here, expectation is taken with respect to state transition and reward
distribution, supremum is taken over all possible sequence of policies
for the given MDP. It is also useful to define gain ρπ of a stationary
policy π, which is the expected (total/total discounted/average)
reward when policy π is used in all time steps. For example, for
infinite average reward:

Jπ (s1) = lim
T→∞

E

[
1
T

T∑
t=1

rt|s1

]

where at = π (st) , t = 1, . . . ,T

35/68

Optimal policy

Optimal policy is defined as the one that maximizes the gain of
the MDP.
Due to the structure of MDP it is not difficult to show that it is
sufficient to consider Markovian policies. Henceforth, we
consider only Markovian policies.
For infinite horizon MDP with average/discounted reward criteria,
a further observation that comes in handy is that such a MDP
always has a stationary optimal policy, whenever optimal policy
exists. That is, there always exists a fixed policy so that taking
actions specified by that policy at all time steps maximizes
average/discounted/total reward.
The agent does not need to change policies with time. This
insight reduces the question of finding the best sequential
decision making strategy to the question of finding the best
stationary policy.

36/68

Outline

1 Introduction

2 Dynamic Programming

3 Markov Decision Process (MDP)

4 Bellman Equation

5 Example: Airfare Pricing

6 Iterative algorithms (discounted reward case)
Value Iteration
Q-value iteration
Policy iteration

37/68

Value Functions

It’s often useful to know the value of a state, or state-action pair. By
value, we mean the expected return if you start in that state or
state-action pair, and then act according to a particular policy forever
after. Value functions are used, one way or another, in almost every
RL algorithm.

The On-Policy Value Function Vπ(s), which gives the expected
return if you start in state s and always act according to policy π:

Vπ(s) = lim
T→∞

E

[
T∑

t=1

γt−1rt|s1 = s

]
The On-Policy Action-Value Function Qπ(s, a), which gives the
expected return if you start in state s, take an arbitrary action a
(which may not have come from the policy), and then forever
after act according to policy π:

Qπ(s, a) = lim
T→∞

E

[
T∑

t=1

γt−1rt|s1 = s, a1 = a

]

38/68

Value Functions

The Optimal Value Function V∗(s), which gives the expected
return if you start in state s and always act according to the
optimal policy in the environment:

V∗(s) = max
π

Vπ(s)

The Optimal Action-Value Function, Q∗(s, a), which gives the
expected return if you start in state s, take an arbitrary action a,
and then forever after act according to the optimal policy in the
environment:

Q∗(s, a) = max
π

Qπ(s, a)

39/68

Value Functions

When we talk about value functions, if we do not make reference
to time-dependence, we only mean expected infinite-horizon
discounted return. Value functions for finite-horizon
undiscounted return would need to accept time as an argument.
Can you think about why? Hint: what happens when time’s up?

There are two key connections between the value function and
the action-value function that come up pretty often:

Vπ(s) = E
a∼π

[Qπ(s, a)] ,

and

V∗(s) = max
a

Q∗(s, a).

These relations follow pretty directly from the definitions just
given: can you prove them?

40/68

The Optimal Q-Function and the Optimal Action

There is an important connection between the optimal
action-value function Q∗(s, a) and the action selected by the
optimal policy. By definition, Q∗(s, a) gives the expected return for
starting in state s, taking (arbitrary) action a, and then acting
according to the optimal policy forever after.

The optimal policy in s will select whichever action maximizes the
expected return from starting in s. As a result, if we have Q∗, we
can directly obtain the optimal action, a∗(s), via

a∗(s) = argmax
a

Q∗(s, a).

Note: there may be multiple actions which maximize Q∗(s, a), in
which case, all of them are optimal, and the optimal policy may
randomly select any of them. But there is always an optimal
policy which deterministically selects an action.

41/68

Bellman Equations

All four of the value functions obey special self-consistency
equations called Bellman equations. The basic idea is: The
value of your starting point is the reward you expect to get from
being there, plus the value of wherever you land next.

The Bellman equations for the on-policy value functions are

Vπ(s) = E
a∼π
s′∼P

[
R(s, a, s′) + γVπ(s′)

]
,

Qπ(s, a) = E
s′∼P

[
R(s, a, s′) + γ E

a′∼π

[
Qπ(s′, a′)

]]
,

where s′ ∼ P is shorthand for s′ ∼ P(·|s, a), indicating that the
next state s′ is sampled from the environment’s transition rules;
a ∼ π is shorthand for a ∼ π(·|s); and a′ ∼ π is shorthand for
a′ ∼ π(·|s′).

42/68

Proof of Bellman equations

Proof. Vπ = Rπ + γPπVπ:

Vπ(s) = E
[
r1 + γr2 + γ2r3 + γ3r4 + . . . |s1 = s

]
= E [r1|s1 = s] + γE

[
E
[
r2 + γr3 + γ2r4 + . . . |s2

]
|s1 = s

]
The first term here is simply the expected reward in state s when
action is given by π(s). The second term is γ times the value function
at s2 ∼ P(s, π(s), ·)

Vπ(s) = E [R (s, π(s), s1) + γVπ (s2) |s1 = s]

= R(s, π(s)) + γ
∑
s2∈S

P (s, π(s), s2)Vπ (s2)

= Rπ(s) + γ [PπVπ] (s)

43/68

Bellman Optimal Equations

The Bellman equations for the optimal value functions are

V∗(s) = max
a

E
s′∼P

[
R(s, a) + γV∗(s′)

]
,

Q∗(s, a) = E
s′∼P

[
R(s, a) + γmax

a′
Q∗(s′, a′)

]
.

The crucial difference between the Bellman equations for the
on-policy value functions and the optimal value functions, is the
absence or presence of the max over actions. Its inclusion
reflects the fact that whenever the agent gets to choose its
action, in order to act optimally, it has to pick whichever action
leads to the highest value.

The term “Bellman backup” comes up quite frequently in the RL
literature. The Bellman backup for a state, or state-action pair, is
the right-hand side of the Bellman equation: the
reward-plus-next-value.

44/68

Proof of Bellman optimality equations

Proof. for all s, from the theorem ensuring stationary optimal policy:

V∗(s) = max
π

Vπ(s) = max
π

Ea∼π(s),s′∼P(s,a)
[
R
(
s, a, s′

)
+ γVπ

(
s′
)]

≤ max
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
max
π

Vπ
(
s′
)

= max
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
V∗ (s′

)
Now, if the above inequality is strict then the value of state s can be
improved by using a (possibly non-stationary) policy that uses action
argmaxa R(s, a) in the first step. This is a contradiction to the
definition V∗(s). Therefore,

V∗(s) = max
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
V∗ (s′

)

45/68

Bellman optimality equations

Technically, above only shows that V∗ satisfies the Bellman
equations.
Theorem 6.2.2 (c) in Puterman [1994] shows that V∗ is in fact
unique solution of above equations.
Therefore, satisfying these equations is sufficient to guarantee
optimality, so that it is not difficult to see that the deterministic
(stationary) policy

π∗(s) = argmax
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
V∗ (s′

)
is optimal (see Puterman [1994] Theorem 6.2.7 for formal proof).

46/68

Linear programming

Linear programming
The fixed point for above Bellman optimality equations can be found
by formulating a linear program. It amounts to :

min
v∈RS

∑
s

wsvs

s.t. vs ≥ R(s, a) + γP(s, a)⊤v ∀a, s

Proof. V∗ clearly satisfies the constraints of the above LP. Next, we
show that v = V∗ minimizes the obj. fun. The constraint implies that

vs ≥ R (s, π∗(s)) + γP (s, π∗(s))⊤ v, ∀s

(Above is written assuming π∗ is deterministic, which is in fact true in
the infinite horizon discounted reward case.) Or,(

I − γPπ∗
)

v ≥ Rπ∗

47/68

Proof

Because γ < 1, (I − γPπ)−1 exists for all π, and for any u ≥ 0

(I − γPπ)−1 u =
(

I + γPπ + γ2 (Pπ)2 + · · ·
)

u ≥ u

Therefore, from above(
I − γPπ∗

)−1 ((
I − γPπ∗

)
v − Rπ∗

)
≥ 0

Or,

v ≥
(

I − γPπ∗
)−1

Rπ∗
= V∗

Therefore, w⊤v for w > 0 is minimized by v = V∗.

48/68

Outline

1 Introduction

2 Dynamic Programming

3 Markov Decision Process (MDP)

4 Bellman Equation

5 Example: Airfare Pricing

6 Iterative algorithms (discounted reward case)
Value Iteration
Q-value iteration
Policy iteration

49/68

An Example in Revenue Management: Airfare Pricing

The price corresponding to each fare class rarely changes (this is
determined by other department), however, the RM department
determines when to close low fare classes

From the passenger’s point of view, when the RM system closes
a class, the fare increases

Closing fare class achieves dynamic pricing

50/68

Fare classes

And when you make booking, you will frequently see messages like

This is real. It means there are only that number of tickets at that fare
class (there is one more sale that will trigger the next protection level)

You can try to buy one ticket with only one remaining, and see
what happens

51/68

Dynamic Arrival of Consumers

Assumptions
There are T periods in total indexed forward (the first period is 1
and the last period is T)
There are C inventory at the beginning
Customers belong to n classes, with p1 > p2 > ... > pn

In each period, there is a probability λi that a class i customer
arrives
Each period is small enough so that there is at most one arrival
in each period

Decisions
When at period t and when you have x inventory remaining,
which fare class should you accept (if such a customer comes)
Instead of finding a single optimal price or reservation level, we
now seek for a decision rule, i.e., a mapping from (t, x) to
{I|I ⊂ {1, ..., n}}.

52/68

Dynamic Arrival - a T-stage DP problem

State: Inventory level xk for stages k = 1, ...,T

Action: Let u(k) ∈ {0, 1}n to be the decision variable at period k

u(k)i =

{
1 accept class i customer
0 reject class i customer

decision vector u(k) at stage k, where u(k)i decides whether to
accept the ith class

Random disturbance: Let wk, k ∈ {0, ...,T} denotes the type of
new arrival during the kth stage (type 0 means no arrival). Then
P(wk = i) = λi for k = 1, . . . ,T and P(wk = 0) = 1 −

∑n
i=1 λi

53/68

Value Function: A Rigorous Definition

State transition cost:

gk(xk, u(k),wk) = u(k)wk pwk

where we take p0 = 0. Clearly, E[gk(xk, u(k),wk)|xk] =
∑n

i=1 u(k)i piλi

State transition dynamics

xk+1 =

{
xk − 1 if u(k)wk wk ̸= 0 (with probability

∑n
i=1 u(k)i λi)

xk otherwise (with probability 1 −
∑n

i=1 u(k)i λi)

The overall revenue is

max
µ1,...,µT

E

[
T∑

k=0

gk(xk, µk(xk),wk)

]

subject to the µk : x → {u} for all k

54/68

A Dynamic Programming Model

Let Vt(x) denote the optimal revenue one can earn (by using the
optimal policy onward) starting at time period t with inventory x

Vt(x) = max
µt,...,µT

E

[
T∑

k=t

gk(xk, µk(xk),wk)|xt = x

]

We call Vt(x) the value function (a function of stage t and state x)

Suppose that we know the optimal pricing strategy from time
t + 1 for all possible inventory levels x.

More specifically, suppose that we know Vt+1(x) for all possible
state x. Now let us find the best decisions at time t.

55/68

Bellman’s Equation for Dynamic Arrival Model

We just proved the Bellman’s equation. In the airfare model,
Bellman’s equation is

Vt(x) = max
u

{
n∑

i=1

λi(piui + uiVt+1(x − 1)) + (1 −
n∑

i=1

λiui)Vt+1(x)

}

with VT+1(x) = 0 for all x and Vt(0) = 0 for all t

We can rewrite this as

Vt(x) = Vt+1(x) + max
u

{
n∑

i=1

λiui(pi + Vt+1(x − 1)− Vt+1(x))

}

For every (t, x), we have an equality and an unknown. The Bellman
equation bears a unique solution.

56/68

Dynamic Programming Analysis

Vt(x) = Vt+1(x) + max
u

{
n∑

i=1

λiui(pi −∆Vt+1(x))

}
Therefore the optimal decision at time t with inventory x should be

u∗i =

{
1 pi ≥ ∆Vt+1(x)
0 pi < ∆Vt+1(x)

This is also called bid-price control policy
The bid-price is ∆Vt+1(x)

If the customer pays more than the bid-price, then accept

Otherwise reject

57/68

Dynamic Programming Analysis

Of course, to implement this strategy, we need to know ∆Vt+1(x)

We can compute all the values of Vt+1(x) backwards

Computational complexity is O(nCT)

With those, we can have a whole table of Vt+1(x). And we can
execute based on that

Proposition (Properties of the Bid-prices)
For any x and t, i) ∆Vt(x + 1) ≤ ∆Vt(x), ii) ∆Vt+1(x) ≤ ∆Vt(x)

Intuitions:
Fixed t, the value of the inventory has decreasing marginal
returns

The more time one has, the more valuable an inventory worth

Proof by induction using the DP formula

58/68

Outline

1 Introduction

2 Dynamic Programming

3 Markov Decision Process (MDP)

4 Bellman Equation

5 Example: Airfare Pricing

6 Iterative algorithms (discounted reward case)
Value Iteration
Q-value iteration
Policy iteration

59/68

Value Iteration

Indirect method that finds optimal value function (value vector v
in above), not explicit policy.

Pseudocode
Start with an arbitrary initialization v0. Specify ϵ > 0

Repeat for k = 1, 2, . . . until
∥∥vk(s)− vk−1(s)

∥∥
∞ ≤ ϵ (1−γ)

2γ :
for every s ∈ S, improve the value vector as:

vk(s) = max
a∈A

R(s, a) + γ
∑

s′
P (s, a, s′) vk−1 (s′) (1)

Compute optimal policy as

π(s) ∈ argmax
a

R(s, a) + γP(s, a)⊤vk (2)

60/68

Bellman operator

It is useful to represent the iterative step (1) using operator
L : RS → RS.

LV(s) := max
a∈A

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
V
(
s′
)

LπV(s) := Ea∈π(s)

[
R(s, a) + γ

∑
s′

P
(
s, a, s′

)
V
(
s′
)]

(3)

Then, (1) is same as
vk = Lvk−1 (4)

For any policy π, if Vπ denotes its value function, then, by
Bellman equations:

V∗ = LV∗,Vπ = LπVπ (5)

61/68

Bellman operator

Below is a useful ‘contraction’ property of the Bellman operator,
which underlies the convergence properties of all DP based iterative
algorithms.

Lemma 6
The operator L(·) and Lπ(·) defined by (3) are contraction mappings,
i.e.,

∥Lv − Lu∥∞ ≤ γ∥v − u∥∞
∥Lπv − Lπu∥∞ ≤ γ∥v − u∥∞

62/68

Proof of contraction

Proof. First assume Lv(s) ≥ Lu(s).
Let a∗s = argmaxa∈A R(s, a) + γ

∑
s′ P (s, a, s′) v (s′)

0 ≤ Lv(s)− Lu(s)

≤ R (s, a∗s) + γ
∑

s′
P
(
s, a∗s , s′

)
v
(
s′
)
− R (s, a∗s)− γ

∑
s′

P
(
s, a∗s , s′

)
u
(
s′
)

= γP (s, a∗s)
⊤ (v − u)

≤ γ∥v − u∥∞

Repeating a symmetric argument for the case Lv(s) ≥ Lu(s) gives the
lemma statement. Similar proof holds for Lπ.

63/68

Convergence

Theorem 7 (Theorem 6.3.3, Section 6.3.2 in Puterman [1994])
The convergence rate of the above algorithm is linear at rate γ.
Specifically, ∥∥vk − V∗∥∥

∞ ≤ γk

1 − γ

∥∥v1 − v0∥∥
∞

Further, let πk be the policy given by (2) using vk. Then,∥∥∥Vπk − V∗
∥∥∥
∞

≤ 2γk

1 − γ

∥∥v1 − v0∥∥
∞

64/68

Proof of Convergence

Proof. By Bellman equations V∗ = LV∗∥∥V∗ − vk
∥∥
∞ =

∥∥LV∗ − vk
∥∥
∞

≤
∥∥LV∗ − Lvk

∥∥
∞ +

∥∥Lvk − vk
∥∥
∞

=
∥∥LV∗ − Lvk

∥∥
∞ +

∥∥Lvk − Lvk−1∥∥
∞

≤ γ
∥∥V∗ − vk

∥∥+ γ
∥∥vk − vk−1∥∥

≤ γ
∥∥V∗ − vk

∥∥+ γk
∥∥v1 − v0∥∥∥∥V∗ − vk

∥∥
∞ ≤ γk

1 − γ

∥∥v1 − v0∥∥
Let π = πk be the policy at the end of k iterations. Then, Vπ = LπVπ

by Bellman equations. Further, by definition of π = πk,

Lπvk(s) = max
a

R(s, a) + γ
∑

s′
P
(
s, a, s′

)
vk (s′

)
= Lvk(s)

65/68

Proof of Convergence

Therefore,∥∥Vπ − vk
∥∥
∞ =

∥∥LπVπ − vk
∥∥
∞

≤
∥∥LπVπ − Lπvk

∥∥
∞ +

∥∥Lπvk − vk
∥∥
∞

=
∥∥LπVπ − Lπvk

∥∥
∞ +

∥∥Lvk − Lvk−1∥∥
∞

≤ γ
∥∥Vπ − vk

∥∥+ γ
∥∥vk − vk−1∥∥∥∥Vπ − vk

∥∥
∞ ≤ γ

1 − γ

∥∥vk − vk−1∥∥
≤ γk

1 − γ

∥∥v1 − v0∥∥
Adding the two results above:

∥Vπ − V∗∥∞ ≤ 2γk

1 − γ

∥∥v1 − v0∥∥
∞

66/68

Convergence

In average reward case, the algorithm is similar, but the Bellman
operator used to update the values is now
LV(s) = maxa rs,a + P(s, a)⊤V. Also, here vk will converge to
v∗ + ce for some constant c. Therefore, the stopping condition
used is instead sp

(
vk − vk−1

)
≤ ϵ where

sp(v) := maxs vs −mins vs. That is, span is used instead of L∞
norm. Further since there is no discount (γ = 1), a condition on
the transition matrix is required to prove convergence. Let

γ := max
s,s′,a,a′

1 −
∑
j∈S

min
{

P(s, a, j),P
(
s′, a′, j

)}
Then, linear convergence with rate γ is guaranteed if γ < 1. This
condition ensures that the Bellman operator in this case: is still a
contraction. For more details, refer to Section 8.5.2 in Puterman
[1994].

67/68

Q-value iteration

Q∗(s, a): expected utility on taking action a in state s, and
thereafter acting optimally. Then,V∗(s) = maxa Q∗(s, a).
Therefore, Bellman equations can be written as,

Q∗(s, a) = R(s, a) + γ
∑

s′
P
(
s, a, s′

)(
max

a′
Q∗ (s′, a′

))
Based on above a Q-value-iteration algorithm can be derived:
Pseudocode

Start with an arbitrary initialization Q0 ∈ RS×A.
In every iteration k, improve the Q-value vector as:

Qk(s, a) = R(s, a) + γEs′

[
max

a′
Qk−1 (s′, a′

)
|s, a

]
,∀s, a

Stop if
∥∥Qk − Qk−1

∥∥
∞ is small.

68/68

Policy iteration

Start with an arbitrary initialization of policy π1. The k-th policy
iteration has two steps:

Policy evaluation: Find vk by solving vk = Lπk vk, i.e.,

vk(s) = Ea∼π(s)

[
R
(
s, a, s′

)
+ γ

∑
s′

P
(
s, a, s′

)
vk (s′

)]
,∀s

Policy improvement: Find πk+1 such that Lπk+1vk = Lvk, i.e.,

πk+1(s) = argmax
a

R(s, a) + γEs′
[
vk (s′

)
|s, a

]
,∀s

	Introduction
	Dynamic Programming
	Markov Decision Process (MDP)
	Bellman Equation
	Example: Airfare Pricing
	Iterative algorithms (discounted reward case)
	Value Iteration
	Q-value iteration
	Policy iteration

