
TD-learning and Q-learning

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Shipra Agrawal’s lecture notes

1/48

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

2/48

Outline

1 TD-learning
TD(0)-learning
TD(λ)

2 Q-learning (tabular)
The Q-learning method
Stochastic Approximation method

3 Q-learning with function approximation

4 Deep Q-learning Networks (DQN)

3/48

TD-learning

TD-learning is essentially approximate version of policy
evaluation using samples. Adding policy improvement gives an
approximate version of policy iteration.

Since Vπ(s) is defined as the expectation of the random return
when the process is started from the given state s, an obvious
way of estimating this value is to compute an average over
multiple independent realizations started from the given state.
This is an instance of the so-called Monte-Carlo method.

Unfortunately, the variance of the observed returns can be high.
The Monte-Carlo technique is further difficult to apply if the
system is not accessible through a simulator but rather
estimation happens while actually interacting with the system.

4/48

TD(0)-learning

Policy evaluation is about estimating Vπ(·), which by Bellman
equations is equivalent to finding a stationary point of

Vπ(s) = Ea∼π(s)

[
R (s, a) + γ

∑
s′

P
(
s, a, s′

)
Vπ
(
s′
)]

, ∀s

However, we need to estimate this using only observations
rt, st+1 on playing some action at at current state st.
Let the current estimate of V(s) is V̂(s). Let on taking action
at = π (st) in the current state st, st+1 is the observed (sample)
next state. The predicted value function for the next state st+1 is
V̂ (st+1), giving another prediction of value function at state st

rt + γV̂ (st+1). Note that

E
[
rt + V̂ (st+1) |st, V̂

]
= Ea∼π(st)

[
R (st, a) +

∑
s′

P
(
st, a, s′

)
V̂
(
s′
)
|st, V̂

]

5/48

TD(0)-learning

From Bellman equations, we are looking for V̂ such that

V̂ (st) ≈ rt + V̂ (st+1)

The TD method performs the following update to the value
function estimate at st, moving it towards the new estimate:

V̂ (st)← (1− αt) V̂ (st) + αt
(
rt + γV̂ (st+1)

)
Let δt be the following gap:

δt := rt + γV̂ (st+1)− V̂ (st)

referred to as temporal difference, i.e., the difference between
current estimate, and one-lookahead estimate. Then, the above
also be written as:

V̂ (st)← V̂ (st) + αtδt (1)

6/48

SGD interpretation: a general principal

Let zs be a random variable independent to θ.

Consider:
min
θ

(xθ − Es[zs])
2

It is equivalent to

min
θ

(xθ − Es[zs])
2 − (Es[zs])

2 + Es[z2
s]

⇐⇒ min
θ

x2
θ + (Es[zs])

2 − 2xθEs[zs]− (Es[zs])
2 + Es[z2

s]

⇐⇒ min
θ

x2
θ − 2xθEs[zs] + Es[z2

s]

⇐⇒ min
θ

Es[xθ − zs]
2

Expectation is taken out. It enables us to perform sample on zs.

7/48

SGD interpretation

Recall the Bellman equation:

Vπ(s) = E
a∼π
s′∼P

[
R(s, a, s′) + γVπ(s′)

]
,

we introduce a target Vπ
targ and approximate:

Vπ(s) ≈ E
a∼π
s′∼P

[
R(s, a, s′) + γVπ

targ(s
′)
]

construct a least-squares problem:

min
Vπ(s)

(
Vπ(s)− E

a∼π
s′∼P

[
R(s, a, s′) + γVπ

targ(s
′)
])2

⇐⇒ min
Vπ(s)

E
a∼π
s′∼P

[
Vπ(s)− [R(s, a, s′) + γVπ

targ(s
′)]
]2

8/48

SGD interpretation

use SGD to solve:

min
Vπ(s)

1
2

E
a∼π
s′∼P

[
Vπ(s)− [R(s, a, s′) + γVπ

targ(s
′)]
]2

The gradient with respect to Vπ(s) is

E
a∼π
s′∼P

[
Vπ(s)− [R(s, a, s′) + γVπ

targ(s
′)]
]
.

Take one sample:

Vπ(st)− [R(st, a, st+1) + γVπ
targ(st+1)] = −δt

Hence, one step of SGD is

Vπ(st)← Vπ(st) + αδt

9/48

Tabular TD(0) method for policy evaluation

Algorithm 1 Tabular TD(0) method for policy evaluation
1: Initialization: Given a starting state distribution D0, policy π, the

method evaluates Vπ(s) for all states s.
Initialize V̂ as an empty list/array for storing the value estimates.

2: repeat
3: Set t = 1, s1 ∼ D0. Choose step sizes α1, α2,
4: Perform TD(0) updates over an episode:
5: repeat
6: Take action at at ∼ π (st). Observe reward rt, and new state

st+1.
7: δt := rt + γV̂ (st+1)− V̂ (st)
8: Update V̂ (st)← V̂ (st) + αtδt

9: t = t + 1
10: until episode terminates
11: until change in V̂ over consecutive episodes is small

10/48

Monte Carlo method

Why use only 1-step lookahead to construct target z? Why not
lookahead entire trajectory (in problems where there is a terminal
state, also referred to as episodic MDPs)?

[Szepesvari, 1999] In this example, all transitions are deterministic.
The reward is zero, except when transitioning from state 3 to state 4,
when it is given by a Bernoulli random variable with parameter 0.5.
State 4 is a terminal state. When the process reaches the terminal
state, it is reset to start at state 1 or 2. The probability of starting at
state 1 is 0.9, while the probability of starting at state 2 is 0.1.

11/48

Monte Carlo method

The resulting method is referred to as Monte Carlo method, here
for z a sample trajectory starting at st is used

z =
∞∑

n=0

γnrt+n =: Rt

so that
δt = z− V̂ (st) = Rt − V̂ (st)

V̂ (st) = (1− α)V̂ (st) + αRt

12/48

TD(0) or Monte-Carlo?

This example is taken from page 22− 23, Szepesvari [1999]

First, let us consider an example when TD(0) converges faster.
Consider the above undiscounted episodic MRP shown on the
above figure.
The initial states are either 1 or 2. With high probability the
process starts at state 1, while the process starts at state 2 less
frequently.
Consider now how TD(0) will behave at state 2. By the time state
2 is visited the kth time, on the average state 3 has already been
visited 10 k times.
Assume that αt = 1/(t + 1) (the TD updates with this step size
reduce to averaging of target observations). At state 1 and 2, the
target is V̂(3) (since immediate reward is 0 and transition
probability to state 3 is 1).

13/48

TD(0) or Monte-Carlo?

Therefore, whenever state 2 is visited the TD(0) sets its value as
the average of estimates V̂ t(3) over the time steps t when state 1
was visited (similarly for state 2). At state 3 the TD(0) update
reduces to averaging the Bernoulli rewards incurred upon
leaving state 3. At the kth visit of state 2, Var(V̂(3)) ≃ 1/(10k)
Clearly, E[V̂(3)] = 0.5. Thus, the target of the update of state 2
will be an estimate of the true value of state 2 with accuracy
increasing with k.
Now, consider the Monte-Carlo method. The Monte-Carlo
method ignores the estimate of the value of state 3 and uses the
Bernoulli rewards directly. In particular, Var (Rt|st = 2) = 0.25,
i.e., the variance of the target does not change with time.
On this example, this makes the Monte-Carlo method slower to
converge, showing that sometimes bootstrapping might indeed
help.

14/48

TD(0) or Monte-Carlo?

To see an example when bootstrapping is not helpful, imagine
that the problem is modified so that the reward associated with
the transition from state 3 to state 4 is made deterministically
equal to one.
In this case, the Monte-Carlo method becomes faster since
Rt = 1 is the true target value, while for the value of state 2 to get
close to its true value, TD(0) has to wait until the estimate of the
value at state 3 becomes close to its true value. This slows down
the convergence of TD(0).
In fact, one can imagine a longer chain of states, where state
i + 1 follows state i, for i ∈ 1, . . . ,N and the only time a nonzero
reward is incurred is when transitioning from state N − 1 to state
N.
In this example, the rate of convergence of the Monte-Carlo
method is not impacted by the value of N, while TD(0) would get
slower with N increasing.

15/48

TD(λ)

TD(λ) is a "middle-ground" between TD(0) and Monte-Carlo
evaluation.
Here, the algorithm considers ℓ-step predictions:

zℓt =
ℓ∑

n=0

γnrt+n + γℓ+1V̂ (st+ℓ+1)

with temporal difference:

δℓt = z− V̂ (st)

=

ℓ∑
n=0

γnrt+n + γℓ+1V̂ (st+ℓ+1)− V̂ (st)

=

ℓ∑
n=0

γn (rt+n + γV̂ (st+n+1)− V̂ (st+n)
)

=

ℓ∑
n=0

γnδt+n

16/48

TD(λ)

In TD(λ) method, a mixture of ℓ-step predictions is used, with
weight (1− λ)λℓ for ℓ ≥ 0. Therefore, λ = 0 gives TD(0), and
λ→ 1 gives Monte-Carlo method. λ > 1 gives a multi-step
method. To summarize, the TD(λ) update is given as:

V̂ (st)← V̂ (st) + αt

∞∑
ℓ=0

(1− λ)λℓδℓt = V̂ (st) + αt

∞∑
n=0

λnγnδt+n

17/48

Policy improvement with TD-learning

TD-learning allows evaluating a policy. For using TD-learning for
finding optimal policy, we need to be able to improve the policy.
Recall policy iteration effectively requires evaluating Q-value of a
policy, where Qπ(s, a) = R(s, a) + γ

∑
s′ P

π (s, a, s′)Vπ (s′). With simple
modification, TD-learning can be used to estimate Q-value of a policy.
There, the updates would be replaced by:
δt := rt + γQ̂ (st+1, π (st+1))− Q̂ (st, at)
Update Q̂ (st, at)← Q̂ (st, at) + αtδt

Then, the scheme for policy improvement is similar to policy iteration.
Repeat the following until convergence to some policy:

Use TD-learning to evaluate the policy πk. The method outputs
Q̂πk

(s, a),∀s, a

Compute new ’improved policy’ πk+1 as
πk+1(s)← argmaxa Q̂πk

(s, a).

18/48

Outline

1 TD-learning
TD(0)-learning
TD(λ)

2 Q-learning (tabular)
The Q-learning method
Stochastic Approximation method

3 Q-learning with function approximation

4 Deep Q-learning Networks (DQN)

19/48

Q-learning (tabular)

Q-learning is a sample based version of Q-value iteration. This
method attempts to directly find optimal Q-values, instead of
computing Q-values of a given policy.
Recall Q-value iteration: for all s, a update,

Qk+1(s, a)← R(s, a) + γ
∑

s′
P
(
s, a, s′

)(
max

a′
Qk
(
s′, a′

))
Q-learning approximates these updates using sample
observations, similar to TD-learning.
In steps t = 1, 2, . . . of an episode, the algorithm observes reward
rt and next state st+1 ∼ P (·, st, at) for some action at. It updates
the Q-estimates for pair (st, at) as follows:

Qk+1 (st, at) = (1− α)Qk (st, at) + α

(
rt + γmax

a′
Qk
(
st+1, a′

))
︸ ︷︷ ︸

target

20/48

SGD Interpretation

The Bellman optimal equation is

Q∗(s, a) = E
s′∼P

[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
We introduce a target Qtarg(s, a) and approximate:

Q(s, a) ≈ E
s′∼P

[
R(s, a, s′) + γmax

a′
Qtarg(s′, a′)

]
Construct a least square problem:

min

(
Q(s, a)− E

s′∼P

[
R(s, a, s′) + γmax

a′
Qtarg(s′, a′)

])2

⇐⇒ min E
s′∼P

[
Q(s, a)− [R(s, a, s′) + γmax

a′
Qtarg(s′, a′)]

]2

21/48

SGD Interpretation

use SGD to solve the least square problem:

min
1
2

E
s′∼P

[
Q(s, a)− [R(s, a, s′) + γmax

a′
Qtarg(s′, a′)]

]2

One sample of the gradient is

Q(s, a)− [R(s, a, st+1) + γmax
a′

Qtarg(st+1, a′)] = −δt.

One SGD step is

Q(s, a)← Q(s, a) + αtδt.

22/48

Q-learning (tabular)

Algorithm 2 Tabular Q-learning method
1: Initialization: Given a starting state distribution D0.

Initialize Q̂ as an empty list/array for storing the Q-value estimates.
2: repeat
3: Set t = 1, s1 ∼ D0. Choose step sizes α1, α2,
4: Perform Q-learning updates over an episode:
5: repeat
6: Take action at at. Observe reward rt, and new state st+1.
7: δt :=

(
rt + γmaxa′ Q̂ (st+1, a′)

)
− Q̂ (st, at)

8: Update Q̂ (st, at)← Q̂ (st, at) + αtδt

9: t = t + 1
10: until episode terminates
11: until change in Q̂ over consecutive episodes is small

23/48

How to select actions, the issue of exploration

The convergence results (discussed below) for Q-learning will
say that if all actions and states are infinitely sampled, learning
rate is small, but does not decrease too quickly, then Q-learning
converges. (Does not matter how you select actions, as long as
they are infinitely sampled).
One option is to select actions greedily according to the current
estimate maxa Qk(s, a). But, this will reinforce past errors, and
may fail to sample and estimate Q-values for actions which have
higher error levels. We may get stuck at a subset of (suboptimal)
actions.
Therefore, exploration is required. The ϵ-greedy approach (i.e.,
with ϵ probability pick an action uniformly at random instead of
greedy choice) can ensure infinite sampling of every action, but
can be very inefficient.

24/48

How to select actions, the issue of exploration

The same issue occurs in TD-learning based policy improvement
methods. The choice of action is specified as the greedy policy
according to the previous episode estimates. Without exploration
this may not ensure that all actions and states are infinitely
sampled.
One option is to replace policy improvement step by greedy
choice. That is, the policy improvement step will now compute
the new ‘improved policy’ πk+1 as the randomized policy:

πk+1(s) =

{
a∗k := argmaxa Q̂πk

(s, a), with probability 1− ϵ+ ϵ
|A|

a, with probability ϵ
|A| , a ̸= a∗k

Then, in policy evaluation, this ’randomized policy’ must be used.
7 : δt := rt + γEa∼πk+1(st+1)

[
Q̂ (st+1, a)

]
− Q̂ (st, at)

8 : Update Q̂ (st, at)← Q̂ (st, at) + αtδt

25/48

Convergence theorem

Theorem 1 (Watkins and Dayan [1992])
Given bounded rewards |rt| ≤ R, learning rates 0 ≤ αt < 1, and

∞∑
i=1

αni(s,a) =∞,

∞∑
i=1

(
αni(s,a)

)2
<∞

then Q̂t(s, a)→ Q(s, a) as t→∞ for all s, a with probability 1. Here,
ni(s, a) is the index of the ith time the action a is tried in state s, and
Q̂t(s, a) is the estimate Q̂ in round t.

If all actions and states are infinitely sampled, learning rate is
small, but does not decrease too quickly, then Q-learning
converges. (Does not matter how you select actions, as long as
they are infinitely sampled).
The proof of this and many similar results in RL algorithms follow
the analysis of a more general online learning/optimization
method - the stochastic approximation method.

26/48

Stochastic Approximation method

The stochastic approximation (SA) algorithm essentially solves a
system of (nonlinear) equations of the form

h(θ) = 0

for unknown h(·), based on noisy measurements of h(θ).
More specifically, consider a (continuous) function Rd → Rd, with
d ≥ 1, which depends on a set of parameters θ ∈ Rd. Suppose
that h(θ) is unknown. However, for any θ we can measure
Z = h(θ) + ω, where ω is some 0-mean noise. The classical SA
algorithm (Robbins and Monro [1951]) is of the form

θn+1 = θn + αnZn

= θn + αn (h (θn) + ωn) , n ≥ 0

Since ωn is 0-mean noise, the stationary points of the above
algorithm coincide with the solutions of h(θ) = 0.

27/48

Asynchronous version

More relevant to the RL methods discussed here is the
asynchronous version of the SA method. In the asynchronous
version of SA method, we may observe only one coordinate (say
ith) of Zn = h (θn) + ωn at a time step, and we use that to update
ith component of our parameter estimate:

θn+1[i] = θn[i] + αnZn[i]

The convergence for this method will be proven similarly to the
synchronous version, under the assumption that every
coordinate is sampled infinitely often.

28/48

Outline

1 TD-learning
TD(0)-learning
TD(λ)

2 Q-learning (tabular)
The Q-learning method
Stochastic Approximation method

3 Q-learning with function approximation

4 Deep Q-learning Networks (DQN)

29/48

Q-learning with function approximation

The tabular Q-learning does not scale with increase in the size of
state space. In most real applications, there are too many states
to keep visit, and keep track of.
For scalability, we want to generalize, i.e., use what we have
learned about already visited (relatively small number of) states,
and generalize it to new, similar states.
A fundamental idea is to use ‘function approximation’, i.e., use a
lower dimensional feature representation of the state- action pair
s, a and learn a parametric approximation Qθ(s, a).

30/48

Q-learning with function approximation

For example, the function Qθ(s, a) can simply be a linear function
in θ and features Qθ(s, a) = θ0f0(s, a) + θ1f1(s, a) + . . .+ θnfn(s, a),
or a deep neural net. Given parameter θ, the Q-function can be
computed for unseen s, a. Instead of learning the |S| × |A|
dimensional Q-table, the Q-learning algorithm will learn the
parameter θ. Here, on observing sample transition to s′ from s on
playing action a, instead of updating the estimate of Q(s, a) in the
Q-table, the algorithm updates the estimate of θ.
Intuitively, we are trying to find a θ such that for every s, a the
Bellman equation,

Qθ(s, a) = Es′∼P(·|s,a)

[
R
(
s, a, s′

)
+ γmax

a′
Qθ

(
s′, a′

)]
can be approximated well for all s, a.

31/48

SGD Interpretation

Similarly, we obtain a least square problem:

min
θ

1
2

E
s′∼P

[
Qθ(s, a)− [R(s, a, s′) + γmax

a′
Qθtarg(s

′, a′)]
]2

min
θ

ℓθ(s, a) = E
s′∼P

[
ℓθ
(
s, a, s′

)]
One sample of the gradient is

∇θℓθ(s, a, s′)

=

(
Qθ(s, a)− [R(s, a, s′) + γmax

a′
Qtarg(st+1, a′)]

)
∇θQθ(s, a)

= −δt∇θQθ(s, a).

One SGD step is

Q(s, a)← Q(s, a) + αtδt∇θQθ(s, a).

32/48

Q-learning Algorithm overview

Start with initial state s = s0. In iteration k = 1, 2, . . .,
Take an action a.
Observe reward r, transition to state s′ ∼ P(·|s, a).
θk+1 ← θk − αk∇θkℓθk (s, a, s′), where

∇θℓθk

(
s, a, s′

)
= −δt∇θQθk(s, a)

δt = r + γmax
a′

Qθk

(
s′, a′

)
− Qθk(s, a)

s← s′,
If s′ reached at some point is a terminal state, s is reset to starting
state.

33/48

Outline

1 TD-learning
TD(0)-learning
TD(λ)

2 Q-learning (tabular)
The Q-learning method
Stochastic Approximation method

3 Q-learning with function approximation

4 Deep Q-learning Networks (DQN)

34/48

Deep Q-Networks — Algorithm

DQN: θ is a deep neural network

35/48

Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an algorithm
which concurrently learns a Q-function and a policy. It uses
off-policy data and the Bellman equation to learn the Q-function,
and uses the Q-function to learn the policy.

This approach is closely connected to Q-learning, and is
motivated the same way: if you know the optimal action-value
function Q∗(s, a), then in any given state, the optimal action a∗(s)
can be found by solving

a∗(s) = argmax
a

Q∗(s, a).

DDPG interleaves learning an approximator to Q∗(s, a) with
learning an approximator to a∗(s), and it does so in a way which
is specifically adapted for environments with continuous action
spaces. But what does it mean that DDPG is adapted
specifically for environments with continuous action spaces? It
relates to how we compute the max over actions in maxa Q∗(s, a).

36/48

When there are a finite number of discrete actions, the max
poses no problem, because we can just compute the Q-values
for each action separately and directly compare them. (This also
immediately gives us the action which maximizes the Q-value.)
But when the action space is continuous, we can’t exhaustively
evaluate the space, and solving the optimization problem is
highly non-trivial. Using a normal optimization algorithm would
make calculating maxa Q∗(s, a) a painfully expensive subroutine.
And since it would need to be run every time the agent wants to
take an action in the environment, this is unacceptable.

Because the action space is continuous, the function Q∗(s, a) is
presumed to be differentiable with respect to the action
argument. This allows us to set up an efficient, gradient-based
learning rule for a policy µ(s) which exploits that fact. Then,
instead of running an expensive optimization subroutine each
time we wish to compute maxa Q(s, a), we can approximate it
with maxa Q(s, a) ≈ Q(s, µ(s)).

37/48

The Q-Learning Side of DDPG

First, let’s recap the Bellman equation describing the optimal
action-value function, Q∗(s, a). It’s given by

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
where s′ ∼ P is shorthand for saying that the next state, s′, is
sampled by the environment from a distribution P(·|s, a).

This Bellman equation is the starting point for learning an
approximator to Q∗(s, a). Suppose the approximator is a neural
network Qϕ(s, a), with parameters ϕ, and that we have collected
a set D of transitions (s, a, r, s′, d) (where d indicates whether
state s′ is terminal). We can set up a mean-squared Bellman
error (MSBE) function, which tells us roughly how closely Qϕ

comes to satisfying the Bellman equation:

L(ϕ,D) = E
(s,a,r,s′,d)∼D

(Qϕ(s, a)−
(

r + γ(1− d)max
a′

Qϕ(s′, a′)
))2



38/48

Here, in evaluating (1− d), we’ve used: “True" to 1 and “False” to
zero. Thus, when “d==True”—which is to say, when s′ is a
terminal state—the Q-function should show that the agent gets
no additional rewards after the current state.

Q-learning algorithms for function approximators, such as DQN
(and all its variants) and DDPG, are largely based on minimizing
this MSBE loss function. There are two main tricks employed by
all of them which are worth describing, and then a specific detail
for DDPG.

Trick One: Replay Buffers. All standard algorithms for training
a deep neural network to approximate Q∗(s, a) make use of an
experience replay buffer. This is the set D of previous
experiences. In order for the algorithm to have stable behavior,
the replay buffer should be large enough to contain a wide range
of experiences, but it may not always be good to keep everything.
If you only use the very-most recent data, you will overfit to that
and things will break; if you use too much experience, you may
slow down your learning. This may take some tuning to get right.

39/48

Trick Two: Target Networks. Q-learning algorithms make use
of target networks. The term

r + γ(1− d)max
a′

Qϕ(s′, a′)

is called the target, because when we minimize the MSBE loss,
we are trying to make the Q-function be more like this target.
Problematically, the target depends on the same parameters we
are trying to train: ϕ. This makes MSBE minimization unstable.
The solution is to use a set of parameters which comes close to
ϕ, but with a time delay—that is to say, a second network, called
the target network, which lags the first. The parameters of the
target network are denoted ϕtarg.

40/48

In DQN-based algorithms, the target network is just copied over
from the main network every some-fixed-number of steps. In
DDPG-style algorithms, the target network is updated once per
main network update by polyak averaging:

ϕtarg ← ρϕtarg + (1− ρ)ϕ

where ρ is between 0 and 1 (usually close to 1).

DDPG Detail: Calculating the Max Over Actions in the
Target. As mentioned earlier: computing the maximum over
actions in the target is a challenge in continuous action spaces.
DDPG deals with this by using a target policy network to
compute an action which approximately maximizes Qϕtarg . The
target policy network is found the same way as the target
Q-function: by polyak averaging the policy parameters over the
course of training.

41/48

Putting it all together, Q-learning in DDPG is performed by
minimizing the following MSBE loss with stochastic gradient
descent:

L(ϕ,D) = E
(s,a,r,s′,d)∼D

(Qϕ(s, a)−
(
r + γ(1− d)Qϕtarg(s

′, µθtarg(s
′))
))2

 ,

where µθtarg is the target policy.

42/48

The Policy Learning Side of DDPG

Policy learning in DDPG is fairly simple. We want to learn a
deterministic policy µθ(s) which gives the action that maximizes
Qϕ(s, a). Because the action space is continuous, and we
assume the Q-function is differentiable with respect to action, we
can just perform gradient ascent (with respect to policy
parameters only) to solve

max
θ

E
s∼D

[Qϕ(s, µθ(s))] .

Note that the Q-function parameters are treated as constants
here.

43/48

Pseudocode: DDPG

Algorithm 3 Deep Deterministic Policy Gradient
1: Input: initial policy parameters θ, Q-function parameters ϕ, empty replay bufferD
2: Set target parameters equal to main parameters θtarg ← θ, ϕtarg ← ϕ

3: repeat
4: Observe state s and select action a = clip(µθ(s) + ϵ, aLow, aHigh), where ϵ ∼ N
5: Execute a in the environment
6: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, d) in replay bufferD
8: If s′ is terminal, reset environment state.
9: if it’s time to update then
10: for however many updates do
11: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} fromD
12: Compute targets y(r, s′, d) = r + γ(1− d)Qϕtarg (s′, µθtarg (s′))

13: Update Q-function by one step of gradient descent using∇ϕ
1

|B|
∑

(s,a,r,s′,d)∈B
(

Qϕ(s, a)− y(r, s′, d)
)2

14: Update policy by one step of gradient ascent using∇θ
1

|B|
∑

s∈B Qϕ(s, µθ(s))

15: Update target networks with

ϕtarg ← ρϕtarg + (1− ρ)ϕ

θtarg ← ρθtarg + (1− ρ)θ

16: end for
17: end if
18: until convergence

44/48

Twin Delayed DDPG (TD3)

A common failure mode for DDPG is that the learned Q-function
begins to dramatically overestimate Q-values, which then leads
to the policy breaking, because it exploits the errors in the
Q-function.

Trick One: Clipped Double-Q Learning. TD3 learns two
Q-functions instead of one (hence "twin"), and uses the smaller
of the two Q-values to form the targets in the Bellman error loss
functions.

Trick Two: "Delayed" Policy Updates. TD3 updates the policy
(and target networks) less frequently than the Q-function. The
paper recommends one policy update for every two Q-function
updates.

Trick Three: Target Policy Smoothing. TD3 adds noise to the
target action, to make it harder for the policy to exploit Q-function
errors by smoothing out Q along changes in action.

45/48

Key Equations: target policy smoothing

TD3 concurrently learns two Q-functions, Qϕ1 and Qϕ2 , by mean
square Bellman error minimization, in almost the same way that
DDPG learns its single Q-function.

target policy smoothing. Actions used to form the Q-learning
target are based on the target policy, µθtarg , but with clipped noise
added on each dimension of the action. After adding the clipped
noise, the target action is then clipped to lie in the valid action
range (all valid actions, a, satisfy aLow ≤ a ≤ aHigh). The target
actions are thus:

a′(s′) = clip
(
µθtarg(s

′) + clip(ϵ,−c, c), aLow, aHigh
)
, ϵ ∼ N (0, σ)

Target policy smoothing essentially serves as a regularizer for
the algorithm. It addresses a particular failure mode that can
happen in DDPG: if the Q-function approximator develops an
incorrect sharp peak for some actions, the policy will quickly
exploit that peak and then have brittle or incorrect behavior. This
can be averted by smoothing out the Q-function over similar
actions, which target policy smoothing is designed to do.

46/48

clipped double-Q learning

Both Q-functions use a single target, calculated using whichever
of the two Q-functions gives a smaller target value:

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qϕi,targ(s
′, a′(s′)),

and then both are learned by regressing to this target:

L(ϕ1,D) = E
(s,a,r,s′,d)∼D

(Qϕ1(s, a)− y(r, s′, d)

)2
 ,

L(ϕ2,D) = E
(s,a,r,s′,d)∼D

(Qϕ2(s, a)− y(r, s′, d)

)2
 .

Using the smaller Q-value for the target, and regressing towards
that, helps fend off overestimation in the Q-function.

47/48

the policy is learned just by maximizing Qϕ1 :

max
θ

E
s∼D

[Qϕ1(s, µθ(s))] ,

which is pretty much unchanged from DDPG. However, in TD3,
the policy is updated less frequently than the Q-functions are.
This helps damp the volatility that normally arises in DDPG
because of how a policy update changes the target.

Exploration vs. Exploitation: TD3 trains a deterministic policy
in an off-policy way. Because the policy is deterministic, if the
agent were to explore on-policy, in the beginning it would
probably not try a wide enough variety of actions to find useful
learning signals. To make TD3 policies explore better, we add
noise to their actions at training time, typically uncorrelated
mean-zero Gaussian noise. To facilitate getting higher-quality
training data, you may reduce the scale of the noise over the
course of training.

48/48

Pseudocode: TD3

Algorithm 4 Twin Delayed DDPG
1: Input: initial policy θ, Q-function ϕ1, ϕ2, empty replay bufferD. Set θtarg ← θ, ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

2: repeat
3: Observe state s and select action a = clip(µθ(s) + ϵ, aLow, aHigh), where ϵ ∼ N
4: Execute a in the environment
5: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
6: Store (s, a, r, s′, d) in replay bufferD
7: If s′ is terminal, reset environment state.
8: if it’s time to update then
9: for j in range(however many updates) do
10: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} fromD
11: Compute target actions a′(s′) = clip

(
µθtarg (s′) + clip(ϵ,−c, c), aLow, aHigh

)
, ϵ ∼ N (0, σ)

12: Compute targets y(r, s′, d) = r + γ(1− d)mini=1,2 Qϕtarg,i
(s′, a′(s′))

13: Update Q-functions by one gradient step: ∇ϕi
1

|B|
∑

(s,a,r,s′,d)∈B
(

Qϕ,i(s, a)− y(r, s′, d)
)2 for i = 1, 2

14: if j mod policy_delay = 0 then
15: Update policy by one step of gradient ascent using∇θ

1
|B|

∑
s∈B Qϕ,1(s, µθ(s))

16: Update target networks with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2, θtarg ← ρθtarg + (1− ρ)θ

17: end if
18: end for
19: end if
20: until convergence

	TD-learning
	TD(0)-learning
	TD()

	Q-learning (tabular)
	The Q-learning method
	Stochastic Approximation method

	Q-learning with function approximation
	Deep Q-learning Networks (DQN)

