Lecture: Matrix Completion

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Jure Leskovec and Prof. Emmanuel
Candes’s lecture notes
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Recommendation systems

References:
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The Netflix Prize

@ Training data
e 100 million ratings, 480,000 users, 17,770 movies
e 6 years of data: 2000-2005

@ Test data

o Last few ratings of each user (2.8 million)
e Evaluation criterion: root mean squared error (RMSE):
> (i — ri)?: ry and r; are the predicted and true rating of x

oni
@ Netflix Cinematch RMSE: 0.9514

@ Competition

@ 2700+ teams
o $1 million prize for 10% improvement on Cinematch
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Netflix: evaluation

Matrix R

480,000 users

17,700
movies

Training Data Set

Test Data Set

l—True rating of

2 user x on item i
- rxi)

Predicted ratina

SSE = Z (i,x)ER (T"\'xi

o F



Collaborative Filtering: weighted sum model

’A’xi = bxi + Z W,’j(l"xj - bxj)
JEN(isx)

@ baseline estimate for ry;: by = p+ by + b;
w: overall mean rating
by rating deviation of user x = (avg. rating of user x) - u
b;: (avg. rating of movie i) - u

@ We sum over all movies j that are similar to i and were rated by x

@ wj; is the interpolation weight (some real number). We allow:
ZjeN(i,x) wij # 1

@ w; models interaction between pairs of movies (it does not
depend on user Xx)

@ N(i;x): set of movies rated by user x that are similar to movie i
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Finding weights w;;?

Find w;; such that they work well on known (user, item) ratings:

2
Hvlvtn F(w) := Z (|:bx, + Z wij(ryj — by ] - rxi)

JEN(isx)

@ Unconstrained optimization: quadratic function

Vi, F(w) = ZZ ( {bx,- + Z Wik (re — bxk)] - in) (ry—by) =0

kEN (i)
forj e {N(i,x), Vi, x}

@ Equivalent to solving a system of linear equations?

@ Steepest gradient descent method: w*t! = wk — 7V F(w)

@ Conjugate gradient method oen
/



Latent factor models

@ low rank factorization on Netflix data: R ~ Q - PT

users f factors

e 5 T T2 1]-4]2
" 5l 2 2 211l 3 5|6 |5 users -
el Tl Bl Talal: EEENE ml2|a s |25 | 4]a|1a]a]| T
2245 7 2:1121_3 875143114297121%
nOnE 255_721_2 21|46 [17]24]0 [ 3]a |8 [7 ]| 6|7

1 3 |3 2 4 Q|7 ]2 PT
R Q

@ For now let's assume we can approximate the rating matrix R as
a product of “thin” Q - PT
R has missing entries but let’s ignore that for now! Basically, we
will want the reconstruction error to be small on known ratings
and we don’t care about the values on the missing ones
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Ratings as products of factors

@ How to estimate the missing rating of user x for item i?

= qi- Z QP

where g; is row i of Q and p, is column x of P”

EEENEN
users
5 (6 5 o
0 A |2 |3 |5 5 |8 |[-4 14 [24 |-9
2 |3 |5
£ ol-8 |7 |5 |14 1 |14 |29 12 [ -1 [13
Q L]
=l |21 |3 O
= w21 [-4 |8 |17 9 [-2 |4 76 |
721 |2
1|1 |3 P

f factors Q
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Latent factor models

@ Minimize SSE on training data!
@ Use specialized methods to find P, Q such that 7, = g; - p!
1 . —_ .. T 2
1’1131,1Qn Z . (rxt qi px)
(i)etraining
We don’t require cols of P, Q to be orthogonal/unit length

@ P, Q map users/movies to a latent space
@ Add regularization:

min Z (rvi —gqi - pL)* + A
(ix)etraining

zupxn5+2||q,~n5]
X i

A is called regularization parameters
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Gradient descent method

znpxu%znqiu%]
X i

. L .2
min F(P.Q)i= > (mi—aqi-pi)’+A
(ix)etraining

Gradient decent:
@ Initialize P and Q (using SVD, pretend missing ratings are 0)

@ Do gradient descent:
P Pk — 7V pF(PF, QY),
Qk—H — Qk _ TVQF(Pk, Qk),
where (VoF)iy = =237 (i — qipy )py + 2Aqyr- Here gyr is entry f
of row ¢; of matrix Q

@ Computing gradients is slow when the dimension is huge
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Stochastic gradient descent method

Observation: Letg;s be entry f of row ¢; of matrix Q

(VoF)y = > (=2(ra — aipl)py +27ay) = > VoF(ry)

X,i

(VPF)y = > (=2(ri —apl)ay +2X\py) = Y VpF(ra)

X,i

Stochastic gradient decent:

@ Instead of evaluating gradient over all ratings, evaluate it for each
individual rating and make a step

@ P+ P—7VpF(ry)
Q <+ Q — 7V F(ry)

@ Need more steps but each step is computed much faster
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Latent factor models with biases

predicted models:
i =g+ by +bi+qi-pr

w: overall mean rating, b,: Bias for user x, b;: Bias for movie i

New model:

B D VI S Rl
(i,x)etraining

XD D ll3 D lgill3 + 11B:l5 + 1151113
X i

@ Both biases by, b; as well as interactions g¢;, p, are treated as
parameters (we estimate them)

@ Add time dependence to biases:

Fri = o+ by(t) + bi(t) + g - pL
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Netflix: performance

Global average: 1.1296

User average: 1.0651
Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91
Latent factors:_0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876




Netflix: performance

Leadermard Showing Test Score. Click here to show guiz score

Display top leaders.

Rank Team Name Best Test Score % Improvement Best Submit Time
1 BellKor's Pragmatic Chaos i 0.8567 : 10.06 | 2009-07-26 18:18:28
2 The Ensemble 1 l 0.8567 : 10.06 | 2009-07-26 18:38:22
3 Grand Prize Team TN I N U R R
4 lutions and Vandel ni 08588 ' 984 | 2008-07-10 01:12:31
5 Vandelay Industries | : 0.8591 E 9.81 | 2009-07-10 00:32:20
6 PragmaticTheory ' 0.8594 ' 9.77 | 2008-06-24 12:06:56
7 BellKor in BigChaos : 0.8601 H 970 | 2009-05-13 08:14:09
8 Dace : 08612 : 9.59 . 2009-07-24 17:18:43
] Feeds2 ' 0.8622 ' 9.48 | 2008-07-12 13:11:51
10 BigChaos 1 0.8623 1 0.47 | 2009-04-07 12:33:59
1 lution: i 08623 H 947 | 2009-07-24 00:34:07
12 BellKor : 08624 : 946 . 2009-07-26 17:16:11
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General matrix completion

15/62



Matrix completion

@ Matrix M € Rm>*m
@ Observe subset of entries
@ Can we guess the missing entries?

D X 0 X 2 X
D D D D ) D
X 2 X 20X =2
X =~ 0 X X
D D 0 0 0 X
N 0 X D e
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Which algorithm ?

Hope: only one low-rank matrix consistent with the sampled entries J

Recovery by minimum complexity

minimize rank(X)
subjectto  X;; =M, (i,j) € Q

Problem
@ This is NP-hard

@ Doubly exponential in n (?)

17/62



SVD - Properties

Theorem: SVD

If A is a real m-by-n matrix, then there exits
U=lu,...,u] ER™"and V =[vy,...,v,) € RV
such that UTU =1, VIV = I and
UTAV = diag(ay,...,0,) € R™"  p = min(m,n),

where oy > 02 > ... > 0, > 0.

@ Proof: Let V; € R"*" has orthonormal columns, then exits
V, € R™ (=) sych that V = [V}, V,] is orthogonal.

@ Letx € R" and y € R™ be unit 2-norm vectors: Ax = oy with
o = ||A||2. Then exists V, € R*>*("=1) and U, € R™*("~1) g0
V=1[x,Vo] e R"™" and U = [y, U,] € R™*™ are orthogonal.
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@ Then it can be proved that UTAV has the following structure

T
Uty = (U W > = A,

0 B
‘Al <0>
w

we have [|A;]]3 > (o + wi'w). But o> = ||A|j3 = ||A]|3, and so we
must have w = 0. An induction gives the proof.

Since
2

> (02 + wTw)z,
2

Properties:
@ AV =UX,ATU = VT Av; = ou;, ATuy = opvi,i=1,...,p.
@ rank(A) = r, null(A) = span{v,y1,...,vn}, ran(A) = spanf{uy, ..., u,}

@ A=>"_ oupl
@ Al =07 +...+ 05, lAll2 = oy
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SVD - Best Low Rank Approximation

Let the SVD of A € R™*" be given in Theorem: SVD. If

k < r=rank(A) and Ay = Zle ouv!, then

min  [[A = B2 = [|A — Acll2 = okt
rank(B)=k

@ Proof: Since UTAV = diag(oy, ..., 0%,0,...,0) it follows that
rank(Ag) = k and UT (A — Ay)V = diag(0,...,0, 0441, . ..,0p).
Hence ”A —Ak||2 = Ok+1-

@ Suppose rank(B) = k for some B € R™*". We can find
orthonormal vectors xi, ..., x,—x SO null(B) = span{xi, ..., xp—i}.
A dimension argument shows:

span{xi, ..., x,—i} Nspan{vi,...,vkr1} # {0}
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@ Let z be a unit 2-norm vector in this intersection. Since Bz =0

and
k+1
Az = Z O’i<ViTZ)l/t,',
i=1
we have
k+1
1A = B3 > [[(A = B)zl5 = |4zl = > _ 07 (v]2)* = o7y,
i=1
Comments:

@ So zeroing small o; introduces less error

@ How many os to keep? Rule of thumb: keep 80-90% of ’energy’

(=>07)

21/62



SVD - Complexity

@ To compute SVD: O(nm?) or O(n’>m)

@ But:

o Less work, if we just want singular values
e or if we want first k singular vectors
e or if the matrix is sparse

@ Implemented in linear algebra packages like
e Dense matrix: LAPACK
@ Sparse Matrix: ARPACK, PROPACK
e High Level Software packages: Matlab, SPlus, Mathematica ...
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Relation to Eigen-decomposition

@ SVDgivesusA =UXV'

@ Eigen-decomposition: A = XAX "
@ A is symmetric
e U,V,X are orthonormal
e A, ¥ are diagonal

@ AAT =UuxxTUT
eATA=VEXTVT

@ \(ATA) = d?(A)
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Nuclear-norm minimization

Singular value decomposition
.
X = Z OkURV),
k=1

@ {ox}: singular values, {ut}, {vi}: singular vectors
Nuclear norm (o;(X) is ith largest singular value of X)

n

x|l = oi(X)

i=1
Heuristic
minimize || X/«

subjectto  X;; =M, (i,j) € Q

@ Convex relaxation of the rank minimization program
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Connections with compressed sensing

General setup

Rank minimization Convex relaxation
minimize rank(X) minimize || X||«
subjectto A(X)=1b subjectto A(X)=1b

Suppose X = diag(x),x € R"
@ rank(X) = > 1(xz0) = l1xlle
@ [IX|l. =2, il = lIxlle,

Rank minimization Convex relaxation
minimize  ||x||¢, minimize  ||x||¢,
subjectto Ax=1b>b subjectto Ax=1>

This is compressed sensing!
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Correspondence

parsimony concept cardinality rank
Hilbert Space norm Euclidean Frobenius
sparsity inducing norm 4 nuclear
dual norm Loo operator
norm additivity disjoint support orthogonal row and column spaces
convex optimization linear programming semidefinite programming

Table: From Recht Parrilo Fazel (08)

26/62



Semidefinite programming (SDP)

@ Special class of convex optimization problems
@ Relatively natural extension of linear programming (LP)
@ “Efficient” numerical solvers (interior point methods)

SDP: X € R

minimize (c,x)
subjectto Ax=0»b
x>0

minimize (C,X)
subjectto  (Ax, X) = by

Standard inner product: (C,X) = trace(C*X)
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SOCP/SDP Duality

(P) min c¢'x (D) max b'y
st. Ax=b,xg =0 st. Aly+s=c,s50-0
(P) min (C,X)

.
st (ALX)=p (B max by

st. ) yAi+S=C
(A, X) = by, :
X>0

S=0

Strong duality
@ If p* > —o0, (P) is strictly feasible, then (D) is feasible and

p* — d*
o If d* < 400, (D) is strictly feasible, then (P) is feasible and
p* — d*

@ If (P) and (D) has strictly feasible solutions, then both have
optimal solutions.
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Semidefinite program

min —b'y

(D)
st yiAi+...+yAn XC

@ A;, C € S, multiplier is matrix X € S*
@ Lagrangian £L(y,X) = —b'y+ (X, y1A; + ... + YAy — C)
@ dual function

- <C7X> ’ <AiaX> = b;

X)=inf Ly X)= .
(%) Hy1 0, %) {oo otherwise

The dual of (D) is
min (C,X)

st. (A,X)=b,X>=0
p* = d* if primal SDP is strictly feasible.
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SDP Relaxtion of Maxcut

in Tr(WX
min  x' Wx max —1'v min  Tr(WX)
’ | — t W di -0 <= s.i. Xl‘,' =1
1. T = S.1.
st x + diag(v) = X0

@ a nonconvex problem; feasible set contains 2n discrete points

@ interpretation: partition {1,...,n} in two sets; W;; is cost of
assigning i, j to the same set;; —W;; is cost of assigning to
different sets

dual function

g(v) = inf (xTW)H- Z vi(x? — 1)> = inf x" (W + diag(v))x — 1"v

1
—1Tv W+ diag(v) = 0
—00 otherwise
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Positive semidefinite unknown: SDP formulation

Suppose unknown matrix X is positive semidefinite

min Y oi(X) min trace(X)

i=1
st. Xi=M; (i,j) €
st X;=M; (ij)€Q = ij )
X=0

X =0

Trace heuristic: Mesbahi & Papavassilopoulos (1997), Beck &
D’Andrea (1998)
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General SDP formulation

Let X € R™*". For a given norm || - ||, the dual norm || - ||; is defined as
[1Xlla := sup{(X,Y) : ¥ € R"™*", |[Y]| < 1}

Nuclear norm and spectral norms are dual:

IX|| == o1(X),  [IX][« = > oi(X).

. 0 X
(o[ )

st.zZi =1,

At ; I, Y 0 < Z =1
st [|[Y]l < 1 st |yt ;|7 n

- mf}x (X,Y) Hl;iX 2(X,Y)
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General SDP formulation

The Lagrangian dual problem is:

. 0 X
maxmin  — <Z, [ . O] > +{Z1 = L, W1) + (Zo — 1,, W2)

strong duality after a scaling of 1/2 and change of variables X to —X

minimize (trace(W;) + trace(W>))

N =

(D)

. W, X
subject to [XT Wz] =0

Optimization variables: W; € R"*" W, € R™*"2,

Proposition 2.1 in "Guaranteed Minimum-Rank Solutions of Linear
Matrix Equations via Nuclear Norm Minimization", Benjamin Recht,
Maryam Fazel, Pablo A. Parrilo
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General SDP formulation

Nuclear norm minimization

min || X« max by
<~
st AX)=b st [[A*(y)]| <1

SDP Reformulation
1
min 3 (trace(W;) + trace(W,))

S.t. .A(X) =b — I A*(y)

st |, .,
KIARL A
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Matrix recovery

2
M = ’
;O’kukuka w = (61 _ €2)/\/§

0 00

* x 0 ... 00
M=10 00 ... 00
0 0 0 0 0

Cannot be recovered from a small set of entries
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Rank-1 matrix M = xy*

Mj; = xiy;

X X X X
X X X X
X X X X
X X X X
X X X X
X X X X

If single row (or column) is not sampled — recovery is not possible

What happens for almost all sampling sets?

Q2 subset of m entries selected uniformly at random
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Matrix Rank Minimization

Given X € R™", A : R™" — RP, b € R?, we consider
@ the matrix rank minimization problem:

min rank(X), s.t. AX) =05
@ matrix completion problem:
min rank(X), s.t. X = My, (i,j) € Q
@ nuclear norm minimization:

min || X|. s.t. AX) =5

where || X||. = ", 0; and o; = ith singular value of matrix X.
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Quadratic penalty framework

@ Unconstrained Nuclear Norm Minimization:
min F(X) = X1l + 3|AX) bl
@ Optimality condition:
0 € pdl|IX*||. + A*(A(X") — b),

where 9||X||. = {UVT + W :UTW =0,WV =0, ||W|, < 1}.
e Linearization approach (g is the gradient of 1| A(X) — b|13):

. 1
X = argmin pl|X + (85X = X) + —[IX = X7

_ : 1 k_ ok
= argmin X[l + —|IX = (X" = 7¢")lF
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Matrix Shrinkage Operator

For a matrix Y € R™*", consider:

X —i-f X—-Y
(i v|X]l. A+ S I7-

The optimal solution is:
X := S(Y,v) = UDiag(s(o,v))V',

@ SVD: Y = UDiag(c)V"
@ Thresholding operator:

xi—v, ifxpi—v>0

s(x,v) ==X, with x; = { 0 oW,
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Fixed Point Method (Proximal gradient method)

Fixed Point Iterative Scheme

Yk =Xk — 7 A*(AXF) — b)
XK = (YK ).

Lemma: Matrix shrinkage operator is non-expansive. i.e.,

1S(Y1,v) = S(Y2, v)|[F < [[Y1 = Yal|F.

Complexity of the fixed point method:

Ly||IX° — x*|?

F(XM — F(x*) < o
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Accelerated proximal gradient (APG) method

APG algorithm (r=! =0 = 1):
=11
pr
G = Y- (H A AT - b)

T ? 2

Complexity: x0 -
2L ||X0 — X*

FOX) —F(X) < =
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SVT

Linearized Bregman method:

VAL = vE s AT (A(XY) - b)

Xk+1 — ST,U,(VkJrl)

Convergence to

1
min 7| X|[, + 5||X\|%, st AX)=b
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Review of Bregman method

Consider the problem:
min [|X|., s.t. AX)=0b

Bregman method:
o D(X,X*) = [|X]« — || X" — (P*, X — X*)
o X! .= argminy uD" (X, X*) + AX) - b3
@ pk+! :Pk+iAT(b—A(Xk+1))
Augmented Lagrangian (updating multiplier or b):
o X = argminy pl|X][. + L AX) — 53
@ ptl = b+ (bk _ A(XkJrl))
They are equivalent, see Yin-Osher-Goldfarb-Darbon
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Linearized approaches

Linearized Bregman method:
X = argmin (00X + (AT(AGE) - 8), X~ XF) + X - X,
1 1
P PP (XM X - — AT A = b),
u5( ) p (AX") = b)
which is equivalent to
X = argmin X + 52X -V
VL = VR s AT (AT — b)
Bregmanized operator splitting:
X = argmin X+ (ATAG) -5, X - X) + %Hx — X2
bk+l — b+ (bk 7A(Xk+l))

Are they equivalent?
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Linearized approaches

Linearized Bregman method:

X = argmin 0 (X, X% + (AT (A ), X - X*) 4 %Hx-x"“%,
1 1

Y= P (M xRy — AT (A — b,
L )= L AT(ARY) ~b)

which is equivalent to
X = SV, ud) X = S(6AT (BY), ud)
or
VA= vE s AT (AT — b) P = b+ (b — AKX
Bregmanized operator splitting:

X = S(XF = §(AT (AN = b)), ud) = S(BAT(BY) + X* — 6 AT (AXY), 1b)
P = b+ (6 - AXTTY)
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Low-rank factorization model

@ Finding a low-rank matrix W so that ||Po(W — M)||% or the
distance between W and {Z € R™*",Z;; = M;;,V(i,j) € Q} is
minimized.

@ Any matrix W € R™*" with rank(W) < K can be expressed as
W = XY where X ¢ R"™K and Y € RF*”,

New model

1 2 .
iy EHXY—ZHF s.t. Z; = M, V(i,j) € Q

@ Advantage: SVD is no longer needed!

@ Related work: the solver Opt Space based on optimization on
manifold
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Nonlinear Gauss-Seidel scheme

First variant of alternating minimization:

X, « zvt=zvT(yyrHf,
Y.« (x)'z=xix)i(x]2),
Z_|_ — X+Y++PQ(M—X+Y+).

Let P4 be the orthogonal projection onto the range space R(A)
© X, Y, = (Xy(X[X:)X])Z="Px.Z
@ One can verify that R(X,) = R(ZY ") .
@ X\ Y, =Py Z=2Y"(YZ'ZY ") (YZ")Z.
@ idea: modify X or Y. to obtain the same product X Y
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Nonlinear Gauss-Seidel scheme

Second variant of alternating minimization:

X, « zv',
Ve e (x0Z= (X))
Z+ — X+Y++PQ(M—X+Y+)

Third variant of alternating minimization: V = orth(ZY ")

XL <« V,
Y, « V'zZ
Z+ — X+Y+ +7DQ(M —X+Y+).
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Sparse and low-rank matrix separation

@ Given a matrix M, we want to find a low rank matrix W and a
sparse matrix E, so that W + E = M.

@ Convex approximation:

min [[Wil. + plEfr, st. W+E=M

@ Robust PCA
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Video separation

@ Partition the video into moving and static parts
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ADMM

Convex approximation:

min Wil + ul|El, st W+ E=M

Augmented Lagrangian function:

1
L(W,E, A) := W]l + plElh + (A, W+ E - M) + @IIWJrE—MH%

Alternating direction Augmented Lagrangian method

W/+1
Bl

Aj+1

argmui/n LW, E, N),

argmbin L(WH E, M),

N+ %(Wj“ + BT — M.
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W-subproblem

Convex approximation:

witl  .— argmui/n L(W, Ej, Aj)
_ argmlnHWH T 25 HW (M - F — ﬁAj)Hi

= S3(M — E — BN) := UDiag(ss(0))V'

@ SVD: M — E/ — BN = UDiag(o)V'"
@ Thresholding operator:

T R L ifx;—v >0
sy(x) :=x, with x; = { 0 ow.
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E-subproblem

Convex approximation:
Wit = arngin LWL E N)

. 1 . :
= argrr}EmHEHl + T HE_ (M — Wit _IBAJ)Hi_

= sgu(M — W — BN)

, 1
su(y): = argmin vl + 5l = 13

_Jy—wsgn(y), ity >v
0, otherwise

A shrink(y, v)

A J



Low-rank factorization model for matrix separation

@ Consider the model

n%lisn IISIli st. Z+S=D, rank(Z) <K

@ Low-rank factorization: Z = UV

min ||[Z—-DJ; st. UV—-Z=0
uv.z

@ Only the entries Dy, (i,j) € ©, are given. Pq(D) is the projection
of D onto (.

New model

min |Po(Z—-D)||; st UV—-Z=0

2V g

@ Advantage: SVD is no longer needed!
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ADMM

Consider:

min |Pa(Z—-D)|1 st UV—-Z=0

Introduce the augmented Lagrangian function
L5(U.V.Z) = [Pa(z ~ D)y + (A UV - 2) + 2oV~ Z].

Alternating direction augmented Lagrangian framework (Bregman):

U .= arg min Ls(U, Vi, Z, N),
UGRka

Vil .= arg min EB(Uj+1, V,Z, N),
VERKkXn

Z+t' = arg min ,Cg(UjH, vitl z, N),
ZGRITIXH

AN = Aj+’y,3(Uj+1Vj+l—Zj+l).
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ADMM subproblems

@ LetB=27-A/3, then
Up=Bvi(vWhland v, = (ULU,)'UIB
Since U4 V4 = U4 (ULUL)'ULB = Py, B, then:
Q:=orth(BV'), Uy=QandV,=Q'B

@ Variable Z:

Al
Pa(Zy) = Pa (8 (U+V+—D—|—ﬂ,ﬂ) +D>
Pac(Zy) = Poe <U+V+ + 2)
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Nonnegative matrix factorization completion

Model problem:

min 1| XY — Z||3

st. X=U Y=V,
U>0,V2>0,
Pa(Z—-M)=0

min  ||Po(XY — M)||r
st. X>0,Y>0,

Augmented Lagrangian function:
La(X,Y,Z,U,V,ATI) = %HXY —Z|[2+Ae(X—-U)
HLo (v = V) + X~ 0l + 51y — VI,
where A e B := Zij aijbjj.
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ADMM

Xiv1 = (Y] + Uy — M) (YL +al)™!, (
Yir1 = (Xp o Xerr + 8D (XL Ze + BV — TI), (
Ziv1 = Xi1 Vi1 + Pao(M — Xi 11 Yiy1), (3c
Ukt1 = Py (Xiw1 + A/ ), (
Vir1 = P (Yir + 11/ B), (
A1 = M+ ya(Xiy1 — Uks), (3f
i1 = Wi +vB8(Yier1 — Vier1)s (39

where v € (0,1.618) and (P4 (A));; = max{a;;, 0}.
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Sparse covariance selection (A. d’Aspremont)

We estimate a covariance matrix ¥ from empirical data
@ Infer relationships between variables
@ Givenm +1 observations x; € R" on n random variables,
compute S := L S (x; — %) (5 — %)
@ Choose a symmetric subset I of matrix coefficients and denote
by J the complement
@ Choose a covariance matrix & such that
o X =S;forall (i,j) €1
o X' =o0forall (i,j) € J
@ Benefits: maximum entropy, maximum likelihood, existence and
uniqueness

@ Applications: Gene expression data, speech recoginition and
finance
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Maximum likelihood estimation

Consider estimation:

log det X — Tr(SX) — p[|X
max log de r(SX) — plIXlo

Convex relaxations:

log det X — Tr(SX) — p|[X
max logde r(SX) — pl X[,

whose dual problem is:

max logdet W s.t. [[W — S|loc < A
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APG

Zhaosong Lu (smooth optimization approach for sparse covariance
selection) consider

max logdet X — Tr(SX) — p|| X
st. X :={XeS8":81=X*al},

which is equivalent to (U := {U € §" : |U;| < 1,Vij})

in logdetX — (S + pU, X
REY g fosdet X = 000

Let f(U) := maxxecx logdet X — (S + pU, X)

@ logdet X is strongly concave on X

@ f(U) is continuous differentiable

@ Vf(U) is Lipschitz cont. with L = pf3?
Therefore, APG can be applied to the dual problem

min f(U)
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Extension

Consider

max g(x) := min ¢(x, u)

Assume:

@ ¢(x,u) is a cont. fun. which is strictly concave in x € X for every
fixed u € U, and convex diff. in u € U for every fixed x € X. Then
f(u) = maxyex ¢(x,u) is diff.

@ Vf(u) is Lipschitz cont.

Then

@ the primal and the dual min,cy f(«) are both solvable and have

the same optimal value;

@ Nesterov’s smooth minimization approach can be applied to the
dual
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Nesterov’s smoothing technique

Consider

T g o)

Question: What if the assumptions do not hold?
@ Add a strictly convex function ud(u) to the obj. fun.

g(u) = argmin ¢(x, u) + ud(u)

@ g(u) is differentiable
@ Apply Nesterov’s smooth minimization
@ Complexity of finding a e-suboptimal point: O(1) iterations

@ Other smooth technique?
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