
Randomized Numerical Linear Algebra

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Petros Drineas and Prof. Michael W.
Mahoney’s, Prof. Gunnar Martinsson lecture notes

1/62

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

2/62

Outline

1 Randomized Numerical Linear Algebra (RandNLA)

2 Approximating Matrix Multiplication

3 Approximate SVD

4 Random Sampling for SVD

5 Single View Algorithm For Matrix Approximation

3/62

Why RandNLA?

Randomization and sampling allow us to design provably accurate
algorithms for problems that are:

Massive
(matrices so large that can not be stored at all, or can only be
stored in slow memory devices)

Computationally expensive or NP-hard
(combinatorial optimization problems such as the Column
Subset Selection Problem)

4/62

RandNLA: sampling rows/columns

Randomized algorithms
By (carefully) sampling rows/columns of a matrix, we can
construct new, smaller matrices that are close to the original
matrix (w.r.t. matrix norms) with high probability. A


 B

 ≈
 C


 R



By preprocessing the matrix using random projections, we can
sample rows/columns much less carefully (uniformly at random)
and still get nice bounds with high probability.

5/62

RandNLA: sampling rows/columns

Matrix perturbation theory
The resulting smaller matrices behave similarly (in terms of
singular values and singular vectors) to the original matrices
thanks to the norm bounds.

Structural results that “decouple” the “randomized” part from
the “matrix perturbation” part are important in the analyses of
such algorithms.

Interplay
Applications in BIG DATA: (Data Mining, Information Retrieval,
Machine Learning, Bioinformatics, etc.)
Numerical Linear Algebra: Matrix computations and linear
algebra (ie., perturbation theory)
Theoretical Computer Science: Randomized and approximation
algorithms

6/62

Issues

Computing large SVDs: computational time
In commodity hardware (e.g., a 4GB RAM, dual-core laptop),
using MatLab 7.0 (R14), the computation of the SVD of the dense
2,240-by-447,143 matrix A takes about 12 minutes.
Computing this SVD is not a one-liner, since we can not load the
whole matrix in RAM (runs out-of-memory in MatLab).
We compute the eigendecomposition of AAT .

Obviously, running time is a concern.

Machine-precision accuracy is NOT necessary!
Data are noisy.
Approximate singular vectors work well in our settings.

7/62

Issues

Selecting good columns that “capture the structure” of the top
principal components

Combinatorial optimization problem; hard even for small matrices.
Often called the Column Subset Selection Problem (CSSP).
Not clear that such columns even exist.

The two issues:
Fast approximation to the top k singular vectors of a matrix, and

Selecting columns that capture the structure of the top k singular
vectors

are connected and can be tackled using the same framework

8/62

Outline

1 Randomized Numerical Linear Algebra (RandNLA)

2 Approximating Matrix Multiplication

3 Approximate SVD

4 Random Sampling for SVD

5 Single View Algorithm For Matrix Approximation

9/62

Approximating Matrix Multiplication

Problem Statement

Given an m-by-n matrix A and an n-by-p matrix B,
approximate the product AB, Or equvialently,
Approximate the sum of n rank-one matrices

AB =

n∑
i=1

A(i)

(B(i)
)

︸ ︷︷ ︸
∈Rm×p

A(i) the i-th column of A

B(i) the i-th row of B

Each term in the summation is a rank-one matrix

10/62

A sampling approach

AB =

n∑
i=1

A(i)

(B(i)
)

︸ ︷︷ ︸
∈Rm×p

Algorithm
Fix a set of probabilities pi, i = 1, . . . , n, summing up to 1.

For t = 1, . . . , c,
set jt = i, where P(jt = i) = pi.

(Pick c terms of the sum, with replacement, with respect to the
pi.)

Approximate the product AB by summing the c terms, after
scaling.

11/62

Generate Discrete Distributions

Consider a discrete random variable with possible values
c1 < . . . < cn. The probability attached to ci is pi. Let

q0 = 0, qi =

i∑
j=1

pj.

They are the cumulative probabilities associated with ci, i.e.,
qi = F(ci).

To sample this distribution
generate a uniform U

find K ∈ {1, . . . , n} such that qK−1 < U < qK

set X = cK

12/62

With/without replacement

Sampling with replacement:
Each data unit in the population is allowed to appear in the
sample more than once.
It is easy to analyze mathematically.

Sampling without replacement:
Each data unit in the population is allowed to appear in the
sample no more than once.

13/62

A sampling approach

AB =

n∑
i=1

A(i)

(B(i)
)

︸ ︷︷ ︸
∈Rm×p

≈ 1
c

c∑
t=1

1
pjt

A(jt)

(B(jt)
)

︸ ︷︷ ︸
∈Rm×p

Keeping the terms j1, j2, . . . , jc

14/62

The algorithm (matrix notation)



m× n

A




n× p

B

 ≈


m× c

C




c× p

R



Algorithm:
Pick c columns of A to form an m-by-c matrix C and the
corresponding c rows of B to form a c-by-p matrix R.

Approximate AB by CR.
Note

We pick the columns and rows with non-uniform probabilities.
We scale the columns (rows) prior to including them in C(R).

15/62

The algorithm (matrix notation)



m× n

A




n× p

B

 ≈


m× c

C




c× p

R


Algorithm:

Create C and R by performing c i.i.d. trials, with replacement.

For t = 1, . . . , c, pick a column A(jt) and a row B(jt) with probability

P(jt = i) =
‖A(i)‖2‖B(i)‖2∑n
j=1 ‖A(j)‖2‖B(j)‖2

Include A(jt)/(cpjt)
1/2 as a column of C, and B(jt)/(cpjt)

1/2 as a
row of R

16/62

The algorithm (matrix notation)

Let S be an n-by-c matrix whose t-th column (for t = 1, . . . , c) has
a single non-zero entry, namely

Sjtt =
1
√cpjt

Clearly:
AB ≈ CR = (AS)(STB)

Note: S is sparse (has exactly c non-zero elements, one per
column).
It is easy to implement this particular sampling in two passes.

17/62

A bound for the Frobenius norm

For the above algorithm,

E[‖AB− CR‖F] = E[‖AB− ASSTB‖F] ≤ 1
c
‖A‖F‖B‖F

The expectation of CR (element-wise) is AB (unbiased
estimator), regardless of the sampling probabilities.

Our particular choice of sampling probabilities minimizes the
variance of the estimator (w.r.t. the Frobenius norm of the error
AB-CR).

prove using elementary manipulations of expectation

Measure concentration follows from a martingale argument.

The above bound also implies an upper bound for the spectral
norm of the error AB− CR.

18/62

Proofs

Let A ∈ Rm×n and B ∈ Rp×p, 1 ≤ c ≤ n, and pi ≥ 0,
∑

i pi = 1. Then

E[(CR)ij] = (AB)ij, Var[(CR)ij] =
1
c

n∑
i=1

A2
ikB2

kj

pk
− 1

c
(AB)2

ij

Define Xt =

(
A(it)B(it)

cpit

)
ij

=
Aiit Bit j

cpit
. Then

E[Xt] =

n∑
k=1

pk
AikBkj

cpk
=

1
c

(AB)ij and E[X2
t] =

n∑
k=1

A2
ikB2

kj

c2pk

E[(CR)ij] =
∑c

t=1 E[Xt] = (AB)ij

Var[Xt] = E[X2
t]− E[Xt]

2 =

n∑
k=1

A2
ikB2

kj

c2pk
− 1

c2 (AB)2
ij

19/62

Proofs

Lemma:

E[‖AB− CR‖2
F] =

n∑
k=1

|A(k)|2|B(k)|2

cpk
− 1

c
‖AB‖2

F

Proof:

E[‖AB− CR‖2
F] =

n∑
i=1

p∑
j=1

E[(AB− CR)2
ij] =

n∑
i=1

p∑
j=1

Var[(CR)ij]

=
1
c

n∑
k=1

1
pk

(∑
i

A2
ik

)(∑
i

B2
kj

)
− 1

c
‖AB‖2

F

=
1
c

n∑
k=1

1
pk
|A(k)|2|B(k)|2 −

1
c
‖AB‖2

F

20/62

Proofs

Find pk to minimize E[‖AB− CR‖2
F]:

min∑n
k=1 pk=1

f (p1, . . . , pn) =

n∑
k=1

1
pk
|A(k)|2|B(k)|2

Introduce L = f (p1, . . . , pn) + λ(
∑n

k=1 pk − 1) and solve ∂L
∂pi

= 0

It gives pk =
|A(k)||B(k)|∑n

k′=1 |A(k′)||B(k′)|
. Then

E[‖AB− CR‖2
F] =

1
c

(
n∑

k=1

|A(k)||B(k)|

)2

− 1
c
‖AB‖2

F

≤ 1
c
‖A‖2

F‖B‖2
F

21/62

Special case: B = AT

If B = AT , then the sampling probabilities are

P(jt = i) =
‖A(i)‖2

2

‖A‖2
F

Also, R = CT , and the error bounds are:

E[‖AAT − CCT‖F] = E[‖AAT − ASSTAT‖F] ≤ 1
c
‖A‖2

F

22/62

Special case: B = AT

A better spectral norm bound via matrix Chernoff/Bernstein
inequalities:

Assumptions:

Spectral norm of A is one (not important, just normalization)

Frobenius norm of A is at least 0.2 (not important, simplifies
bounds).

Important: Set

c = Ω

(
‖A‖2

F

ε2 ln

(
‖A‖2

F

ε2
√
δ

))
Then: for any 0 < ε < 1 with probability at least 1− δ

E[‖AAT − CCT‖F] = E[‖AAT − ASSTAT‖F] ≤ ε

23/62

Outline

1 Randomized Numerical Linear Algebra (RandNLA)

2 Approximating Matrix Multiplication

3 Approximate SVD

4 Random Sampling for SVD

5 Single View Algorithm For Matrix Approximation

24/62

Low-Rank Matrix Approximation

Problem Statement:
Given: mxn matrix A, and 0 < k < min(m, n) = n.
Goal: Compute a rank-k approximation to A.

Fast low-rank matrix approximation is key to efficiency of
superfast direct solvers for integral equations and many large
sparse linear systems.

Indispensable tool in mining large data sets.

Randomized algorithms compute accurate truncated SVD.

Minimum work and communication/Exceptionally high success
rate.

25/62

Low-rank Approximation

seek to compute a rank-k approximation with k� n



m× n

A

 ≈


m× k

Uk




k × n

X



Eigenvectors corresponding to leading eigenvalues.

Singular Value Decomposition (SVD) / Principal Component
Analysis (PCA).

Spanning columns or rows.
The problem being addressed is ubiquitous in applications.

26/62

Review of existing methods: dense matrix

For a dense n× n matrix that fits in RAM, excellent algorithms are
already part of LAPACK (and incorporated into Matlab, Mathematica,
etc).

Double precision accuracy.

Very stable.

O(n3) asymptotic complexity. Reasonably small constants.

Require extensive random access to the matrix.

When the target rank k is much smaller than n, there also exist
O(n2k) methods with similar characteristics (the well-known
Golub-Businger method, RRQR by Gu and Eisentstat, etc).

For small matrices, the state-of-the-art is quite satisfactory. (By
“small” we mean something like n ≤ 10000 on today’s
computers.)

27/62

Review of existing methods: structured matrix

If the matrix is large, but can rapidly be applied to a vector (if it is
sparse, or sparse in Fourier space, or amenable to the FMM, etc.), so
called Krylov subspace methods often yield excellent accuracy and
speed.

Lanczos-based methods:
1 From v ∈ Rn, computes orthonormal basis V for

K(A, v) = span
{

v,Av,A2v, · · · ,Ak−1v
}

2 Rayleigh-Ritz: eig(VTAV)⇒ Ritz pairs ≈ eigenpairs
3 If “not converged”, update v and go to Step 1.

Strength and weakness:
Most efficient in terms of the number of Av (or SpMv)
Fast and reliable for computing “not too many” eigenpairs
Lower concurrency and unable to be warm-started

28/62

“New” challenges in algorithmic design

The existing state-of-the-art methods of numerical linear algebra that
we have very briefly outlined were designed for an environment
where the matrix fits in RAM and the key to performance was to
minimize the number of floating point operations required. Currently,
communication is becoming the real bottleneck:

While clock speed is hardly improving at all anymore, the cost of
a flop keeps going down rapidly. (Multi-core processors, GPUs,
cloud computing, etc.)
The cost of slow storage (hard drives, flash memory, etc.) is also
going down rapidly.
Communication costs are decreasing, but not rapidly. Moving
data from a hard-drive. Moving data between nodes of a parallel
machine. (Or cloud computer ...) The amount of fast cache
memory close to a processor is not improving much. (In fact, it
could be said to be shrinking — GPUs, multi-core, etc.)
“Deluge of data”. Driven by ever cheaper storage and acquisition
techniques. Web search, data mining in archives of documents
or photos, hyper-spectral imagery, social networks, gene arrays,
proteomics data, sensor networks, financial transactions, . . .

29/62

Review of existing randomized methods

Random column/row selection
Draw at random some columns and suppose that they span the
entire column space. If rows are drawn as well, then spectral
properties can be estimated. Crude sampling leads to less than
O(mn) complexity, but is very dangerous.

Sparsification
Zero out the vast majority of the entries of the matrix. Keep a
random subset of entries, and boost their magnitude to preserve
“something”.

Quantization and sparsification
Restrict the entries of the matrix to a small set of values (-1/0/1
for instance).

Randomized Subspace iteration
Random sampling + Rayleigh Rtiz procedure

30/62

Linear Time SVD Algorithm

Input: m-by-n matrix A, 1 ≤ k ≤ c ≤ n, {pi}n
i=1 such that pi ≥ 0

and
∑

i pi = 1

Sampling:
For t = 1 to c

pick it ∈ {1, . . . , n} with P(it = α) = pα.
Set C(t) = A(it)

√cpit

Compute CTC and its eigenvalue decomposition, say
CTC =

∑c
t=1 σt(C)2ytyT

t

Compute ht = Cyt
σt(C) for t = 1, . . . , k.

(Note: A = UΣVT and C = HΣCYT =⇒ H = CYΣ−1
C)

Return Hk where H(t)
k = ht and σt(C) for t = 1, . . . , k

The left singular vectors of C are with high probability approximations
to the left singular vectors of A

31/62

Extract approximate SVD

Given A. Let X be an approximation of the left singular vectors of
A corresponding to k largest singular values

method = 2; % = 1 or 2
Y = (X’*A)’; % Y = A’*X;
switch method

case 1;
[V,S,W] = svd(Y,0);
U = X*W;

case 2;
[V,R] = qr(Y,0);
[W,S,Z] = svd(R’);
U = X*W; V = V*Z;

end

The pair (U, S, V) is an approximation of the k-dominant SVD

32/62

Main theoretical results

Let Hk be constructed the linear Time SVD

E[‖A− HkHT
k A‖2

F] ≤ ‖A− Ak‖2
F + ε‖A‖2

F

Exact SVD of A = UΣVT , Ak = UkΣkVT
k = UkUT

k A = AVkVT
k .

minrank(B)≤k ‖A− B‖2 = ‖A− Ak‖2 = σk+1(A)

minrank(B)≤k ‖A− B‖2
F = ‖A− Ak‖2

F =
∑r

t=k+1 σ
2
t (A)

perturbation theory of matrices

max
1≤t≤n

|σt(A + E)−σt(A)| ≤ ‖E‖2,
n∑

k=1

(σk(A + E)−σk(A))2 ≤ ‖E‖2
F

the latter is known as Hoffman-Wielandt inequality

Exact SVD of C = HΣCYT

33/62

Proofs

Lemma:

‖A− HkHT
k A‖2

F ≤ ‖A− Ak‖2
F + 2

√
k‖AAT − CCT‖F

‖A− HkHT
k A‖2

2 ≤ ‖A− Ak‖2
2 + 2‖AAT − CCT‖2

Proof of the first inequality
‖X‖2

F = Tr(XTX) and Tr(X + Y) = Tr(X) + Tr(Y)

‖A− HkHT
k A‖2

F = Tr((A− HkHT
k A)T(A− HkHT

k A))

= Tr(ATA)− Tr(ATHkHT
k A) = ‖A‖2

F − ‖ATHk‖2
F

Using Cauchy-Schwartz inequality:∣∣∣∣∣‖ATHk‖2
F −

k∑
t=1

σ2
t (C)

∣∣∣∣∣ ≤ √k

(
k∑

t=1

(|ATht|2 − σ2
t (C))2

)1/2

=
√

k

(
k∑

t=1

(|ATht|2 − |CTht|2)2

)1/2

=
√

k

(
k∑

t=1

((ht)
T(AAT − CCT)ht)

2

)1/2

≤
√

k‖AAT − CCT‖F

34/62

Proofs

by Hoffman-Wielandt inequality∣∣∣∣∣
k∑

t=1

σ2
t (C)−

k∑
t=1

σ2
t (A)

∣∣∣∣∣ ≤ √k

(
k∑

t=1

(σ2
t (C)− σ2

t (A))2

)1/2

=
√

k

(
k∑

t=1

(σt(CCT)− σt(AAT))2

)1/2

≤
√

k

(
m∑

t=1

(σt(CCT)− σt(AAT))2

)1/2

≤
√

k‖CCT − AAT‖F

Therefore ∣∣∣∣∣‖ATHk‖2
F −

k∑
t=1

σ2
t (A)

∣∣∣∣∣ ≤ 2
√

k‖AAT − CCT‖F

35/62

Proofs

matrix approximation gives

E[‖AB− CR‖2
F] ≤ 1

c
‖A‖2

F‖B‖2
F

which yields

2
√

kE[‖AAT − CCT‖F] ≤
(

4k
c

)1/2

‖A‖2
F

‖ATHk‖2
F ≥

k∑
t=1

σ2
t (A)− 2

√
k‖AAT − CCT‖F

If c ≥ 4k/ε2, then

E[‖A− HkHT
k A‖2

F] ≤ ‖A‖2
F −

k∑
t=1

σ2
t (A) + 2

√
kE[‖AAT − CCT‖F]

≤ ‖A− Ak‖2
F + ε‖A‖2

F

36/62

The CX decomposition

Mahoney & Drineas (2009) PNAS



m× n

A

 ≈


m× c

C




c× n

X



Goal: make (some norm) of A− CX small.

C: c columns of A, with c being as close to k as possible

Moore-Penrose pseudoinverse of A:

AA†A = A,A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A

37/62

The CX decomposition



m× n

A

 ≈


m× c

C




c× n

X



Easy to prove that optimal X = C†A. (with respect to unitarily
invariant norms; C† is the Moore-Penrose pseudoinverse of C).
Thus, the challenging part is to find good columns of A to include
in C.

From a mathematical perspective, this is a combinatorial
optimization problem, closely related to the so-called Column
Subset Selection Problem (CSSP); the CSSP has been heavily
studied in Numerical Linear Algebra.

38/62

objective for the CX decomposition

We would like to get theorems of the following form

Given an m-by-n matrix A, there exists an efficient algorithm that
picks a small number of columns of A such that with reasonable
probability:

‖A− CX‖F = ‖A− CC†A‖F ≤ (1 + ε)‖A− Ak‖F

Best rank-k approximation to A: Ak = UkU>k A

Let’s start with a simpler, weaker result, connecting the spectral
norm of A-CX to matrix multiplication.

39/62

Approximating singular vectors

Sample c (=140) columns of the original matrix A and rescale
them appropriately to form a 512-by-c matrix C.
Show that A− CX is “small”.

(C† is the pseudoinverse of C and X = C†A)

40/62

Approximating singular vectors

Sample c (=140) columns of the original matrix A and rescale
them appropriately to form a 512-by-c matrix C.
Show that A− CX is “small”.

(C† is the pseudoinverse of C and X = C†A)

41/62

Approximating singular vectors

The fact that AAT −CCT is small will imply that A−CX is small as well.

42/62

Proof (spectral norm)

Using the triangle inequality and properties of norms,

‖A− CC†A‖2
2 = ‖(I − CC†)A‖2

2

= ‖(I − CC†)AAT(I − CC†)T‖2

= ‖(I − CC†)(AAT − CC†)(I − CC†)T‖2

≤ ‖AAT − CC†‖2

I − CC† is a projection matrices
(I − CC†)CC† = 0

43/62

Proof (spectral norm)

Assume that our sampling is done in c i.i.d. trials and the sampling
probabilities are:

P(jt = i) =
‖A(i)‖2

2

‖A‖2
F

We can use our matrix multiplication result: (We will upper bound the
spectral norm by the Frobenius norm to avoid concerns about c,
namely whether c exceeds the threshold necessitated by the theory.)

E[‖A− CC†A‖2] ≤ E[‖AAT − CCT‖2]

≤ 1
c1/4 ‖A‖F

44/62

Is this a good bound?

E[‖A− CC†A‖2] ≤ E[‖AAT − CCT‖2] ≤ 1
c1/4 ‖A‖F

Problem 1: If c = n we do not get zero error. That’s because of
sampling with replacement. (We know how to analyze uniform
sampling without replacement, but we have no bounds on
non-uniform sampling without replacement.)

Problem 2: If A had rank exactly k, we would like a column
selection procedure that drives the error down to zero when c =
k. This can be done deterministically simply by selecting k
linearly independent columns.

Problem 3: If A had numerical rank k, we would like a bound that
depends on the norm of A− Ak and not on the norm of A.

Such deterministic bounds exist when c = k and depend on
(k(n− k))1/2‖A− Ak‖2

45/62

Relative-error Frobenius norm bounds

Given an m-by-n matrix A, there exists an O(mn2) algorithm that picks

O((k/ε2) ln(k/ε2)) columns of A

such that with probability at least 0.9

‖A− CX‖F = ‖A− CC†A‖F ≤ (1 + ε)‖A− Ak‖F

46/62

Outline

1 Randomized Numerical Linear Algebra (RandNLA)

2 Approximating Matrix Multiplication

3 Approximate SVD

4 Random Sampling for SVD

5 Single View Algorithm For Matrix Approximation

47/62

Range finding problem

Given an m× n matrix A and an integer k < min(m, n), find an
orthonormal m× k matrix Q such that

A ≈ QQTA

Solving the primitive problem via randomized sampling — intuition
Draw random vectors r1, r2, . . . , rk ∈ Rn.

Form “sample” vectors y1 = Ar1, y2 = Ar2, . . . , yk = Ark ∈ Rm.

Form orthonormal vectors q1, q2, . . . , qk ∈ Rm such that

span{q1, q2, . . . , qk} = span{y1, y2, . . . , yk}

Almost always correct if A has exact rank k

48/62

Low-Rank Approximation: Randomized Sampling

Algorithm RandSam0
Input: mxn matrix A, int k, p.
I Draw a random n× (k + p) matrix Ω

I Compute QR = AΩ

I and SVD: QTA = ÛΣ̂V̂T

I Truncate SVD: ÛkΣ̂kV̂T
k

Output: B = (QÛk)Σ̂kV̂T
k

Easy to implement.

Very efficient computation.

Minimum communication.

49/62

error for Gaussian test matrices

Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin,
Tygert (2006)

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1

Let k denote a target rank and let p denote an over-sampling
parameter.

Let Ω denote an n× (k + p) Gaussian matrix.

Let Q denote the m× (k + p) matrix Q = orth(AΩ).
If p ≥ 4, then

‖A− QQ∗A‖2 ≤
(

1 + 6
√

(k + p)p log p
)
σk+1 + 3

√
k + p

∑
j>k

σ2
j

1/2

except with probability at most 3p−p.

50/62

Improved Randomized Sampling

Algorithm RandSam1
Input: mxn matrix A, int k, p, c.
I Draw a random n× (k + p + c) matrix Ω

I Compute QR = AΩ

I and SVD: QTA = ÛΣ̂V̂T

I Truncate SVD: ÛkΣ̂kV̂T
k

Output: B = (QÛk)Σ̂kV̂T
k

Only change from RandSam0: p becomes p + c

Smallest modification of any algorithm.

c allows a drastically different error bound, controls accuracy.

p remains in control of failure chance.

51/62

Randomized Power Method

Algorithm RandSam2
Input: mxn matrix A, int k, p, c, q
I Draw a random n× (k + p + c) matrix Ω

I Compute QR = (AAT)qAΩ

I and SVD: QTA = ÛΣ̂V̂T

I Truncate SVD: ÛkΣ̂kV̂T
k

Output: B = (QÛk)Σ̂kV̂T
k

QR needs done carefully for numerical accuracy.

Algorithm is old one when q = 0; but q = 1 far more accurate.

Should converge faster when singular values do not decay very
fast.

52/62

Example 1

We consider a 1000× 1000 matrix A whose singular values are shown
below:

A is a discrete approximation of a certain compact integral operator
normalized so that ‖A‖ = 1. Curiously, the nature of A is in a strong
sense irrelevant: the error distribution depends only on {σj}min(m,n)

j=1 .

53/62

Example 2

We consider a 1000× 1000 matrix A whose singular values are shown
below:

A is a discrete approximation of a certain compact integral operator
normalized so that ‖A‖ = 1. Curiously, the nature of A is in a strong
sense irrelevant: the error distribution depends only on {σj}min(m,n)

j=1 .

54/62

Example 3

The matrix A being analyzed is a 9025× 9025 matrix arising in a
diffusion geometry approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3×3 patches.

55/62

The pink lines illustrates the performance of the basic random
sampling scheme. The errors for q = 0 are huge, and the estimated
eigenvalues are much too small.

56/62

Outline

1 Randomized Numerical Linear Algebra (RandNLA)

2 Approximating Matrix Multiplication

3 Approximate SVD

4 Random Sampling for SVD

5 Single View Algorithm For Matrix Approximation

57/62

Low-rank reconstruction

Given A ∈ Rm×n and a target rank r. Select k and `. Given random
matrices Ω ∈ Rn×k and Ψ ∈ R`×m. Compute

Y = AΩ, W = ΨA,

Then an approximation Â is computed:

Form an orthogonal-triangular factorization Y = QR where
Q ∈ Rm×k.

Solve a least-squares problem to obtain X = (ΨQ)†W ∈ Rk×n

Construct the rank-k approximation Â = QX

Suppose k = 2r + 1 and ` = 4r + 2, then

E‖A− Â‖F ≤ 2 min
rank(Z)≤r

‖A− Z‖F

58/62

Linear update of A

Suppose that A is sent as a sequence of additive updates:

A = H1 + H2 + H3 + · · ·

Then one compute

Y ← Y + HΩ, W = W + ΨH

Suppose that A is sent as a sequence of additive updates:

A = θA + ηH

Then one compute

Y ← θY + ηHΩ, W = θW + ηΨH

59/62

Intuition

Suppose
A ≈ QQ∗A.

We want to form the rank-k approximation Q(Q∗A), but we cannot
compute the factor Q∗A without revisiting the target matrix A.

Note
W = Ψ(QQ∗A) + Ψ(A− QQ∗A) ≈ (ΨQ)(Q∗A)

The construction of X:

X = (ΨQ)†W ≈ Q∗A

Hence
Â = QX ≈ QQ∗A ≈ A

60/62

Projection onto a Convex Set.

Let C be a closed and convex set. Define the projection:

ΠC(M) = arg min
X

‖X −M‖2
F, s.t. X ∈ C

Suppose A ∈ C. Let Âin be an initial approximation of A,

‖A−ΠC(Âin)‖F ≤ ‖A− Âin‖F

Conjugate Symmetric Approximation

Hn = {X ∈ Cn×n|X = X∗}

The projection

ΠHn(M) =
1
2

(M + M∗)

61/62

Conjugate Symmetric Approximation.

Let A ∈ Hn. Let Â = QX.

ΠHn(Â) =
1
2

(QX + X∗Q∗) =
1
2

[Q,X∗]
(

0 I
I 0

)
[Q,X∗]∗

Let [Q,X∗] = U[T1,T2]. Then

S =
1
2

(T1T∗2 + T2T∗1)

Construct
Âsym = USU∗

62/62

PSD Approximation

Let A be positive semidefinite (PSD). Let Â = QX.
Form eigenvalue decomposition

S = VDV∗

Compute
Âsym = (UV)D(UV)∗

Construct
Â+ = ΠHn

+
(Â) = (UV)D+(UV)∗

	Randomized Numerical Linear Algebra (RandNLA)
	 Approximating Matrix Multiplication
	Approximate SVD
	Random Sampling for SVD
	Single View Algorithm For Matrix Approximation

